Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 8
[out of range]
>
<
1 - 8
[out of range]
>
page
|<
<
(236)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div574
"
type
="
section
"
level
="
1
"
n
="
340
">
<
p
>
<
s
xml:id
="
echoid-s5813
"
xml:space
="
preserve
">
<
pb
o
="
236
"
file
="
0256
"
n
="
256
"
rhead
="
GEOMETRIÆ
"/>
go, vt quadratum, EY, ad quadratum, YS, ita rectangulum, TZ
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0256-01
"
xlink:href
="
note-0256-01a
"
xml:space
="
preserve
">Ex 3. Co-
<
lb
/>
nic. p. 17.</
note
>
S, ad rectangulum, BZA, eodem modo (ſumptoin, AB, vtcun-
<
lb
/>
quepuncto, M, & </
s
>
<
s
xml:id
="
echoid-s5814
"
xml:space
="
preserve
">per, M, ducta, CMG, parallela ipſi, BF,) ſe-
<
lb
/>
quetur rectangulum, GMC, ad rectangulum, BMA, eſſe vt qua-
<
lb
/>
dratum, EY, ad quadratum, YS, ergo rectangulum, TZS, ad re-
<
lb
/>
ctangulum, BZA, erit vt rectangulum, GMC, ad rectangulum,
<
lb
/>
BMA, & </
s
>
<
s
xml:id
="
echoid-s5815
"
xml:space
="
preserve
">ſic dereliquis oſtendemus .</
s
>
<
s
xml:id
="
echoid-s5816
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s5817
"
xml:space
="
preserve
">rectangula ſub portione, AS
<
lb
/>
B, & </
s
>
<
s
xml:id
="
echoid-s5818
"
xml:space
="
preserve
">quadrilineo, AHTFB, adrectangula ſub omnibus abſciſſis,
<
lb
/>
AB, & </
s
>
<
s
xml:id
="
echoid-s5819
"
xml:space
="
preserve
">reſiduis abſciſſarum eiuſdem .</
s
>
<
s
xml:id
="
echoid-s5820
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s5821
"
xml:space
="
preserve
">adrectangula ſub triangulis,
<
lb
/>
ABD, AVD, (ſunt .</
s
>
<
s
xml:id
="
echoid-s5822
"
xml:space
="
preserve
">n. </
s
>
<
s
xml:id
="
echoid-s5823
"
xml:space
="
preserve
">rectangula ſub omnibus abſciſſis, AB, & </
s
>
<
s
xml:id
="
echoid-s5824
"
xml:space
="
preserve
">
<
lb
/>
reſiduis abſciſſarum eiuſdem, æqualia rectangulis ſub duobus triangu-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0256-02
"
xlink:href
="
note-0256-02a
"
xml:space
="
preserve
">Coroll. 2.</
note
>
lis, ABD, AVD,) erunt vt rectangulum, TZS, adrectangulum,
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0256-03
"
xlink:href
="
note-0256-03a
"
xml:space
="
preserve
">Prop. 19.
<
lb
/>
lib. 2.</
note
>
AZB, ideſt vt quadratum, EY, ad quadratum, YS, vel vt quadra-
<
lb
/>
tum, SX, ad quadratum, XE, vel vt quadratum, ST, ad quadra-
<
lb
/>
tum, ER; </
s
>
<
s
xml:id
="
echoid-s5825
"
xml:space
="
preserve
">ergo rectangula ſub portione, ASB, & </
s
>
<
s
xml:id
="
echoid-s5826
"
xml:space
="
preserve
">quadrilineo, A
<
lb
/>
HTFB, ad rectangula ſub triangulis, ABD, AVD, erunt vt qua-
<
lb
/>
dratum, ST, ad quadratum, ER; </
s
>
<
s
xml:id
="
echoid-s5827
"
xml:space
="
preserve
">quod oſtendere oportebat.</
s
>
<
s
xml:id
="
echoid-s5828
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div577
"
type
="
section
"
level
="
1
"
n
="
341
">
<
head
xml:id
="
echoid-head358
"
xml:space
="
preserve
">COROLLARIVM.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s5829
"
xml:space
="
preserve
">HINC patet, quoniam probauimus, omnia quadrata, AD, ſex-
<
lb
/>
cupla eſſe rectangulorum ſub triangulis, ABD, AVD, quod
<
lb
/>
in circulo eadem quadrat a ſint ſexcupla rectangulorum ſub portione,
<
lb
/>
ASB, & </
s
>
<
s
xml:id
="
echoid-s5830
"
xml:space
="
preserve
">quadrilineo, AHTFB. </
s
>
<
s
xml:id
="
echoid-s5831
"
xml:space
="
preserve
">In ellipſi verò, quia pariter om-
<
lb
/>
nia quadrata, AD, rectangulorum ſub triangulis, ABD, AVD,
<
lb
/>
ſunt ſexcupla .</
s
>
<
s
xml:id
="
echoid-s5832
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s5833
"
xml:space
="
preserve
">ſunt ad illa, vt cubus, AB, ad ſui ipſius ſextam par-
<
lb
/>
tem, inſuper rectangula ſub triangulis, ABD, AVD, adrectangula
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0256-04
"
xlink:href
="
note-0256-04a
"
xml:space
="
preserve
">Cor. 24.
<
lb
/>
lib. 2.</
note
>
ſub portione, ASB, & </
s
>
<
s
xml:id
="
echoid-s5834
"
xml:space
="
preserve
">quadrilineo, AHTFB, ſunt vt quadra-
<
lb
/>
tum, ER, conuertendo ad quadratum, ST, .</
s
>
<
s
xml:id
="
echoid-s5835
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s5836
"
xml:space
="
preserve
">vt ſexta pars cubi, AB,
<
lb
/>
ad eiuſdein talem partem, ad quam ipſa ſextapars ſit, vt quadratum, E
<
lb
/>
R, ad quadratum, ST, binc ex æquali omnia quadrata, AD, in elli-
<
lb
/>
pſi, ad rectangula ſub portione, ASB, & </
s
>
<
s
xml:id
="
echoid-s5837
"
xml:space
="
preserve
">quadrilineo, AHTFB,
<
lb
/>
erunt vt cubus, AB, ad ſui ipſius eam partem, ad quam eiuſdem cubi,
<
lb
/>
AB, ſextapars ſit veluti quadratum, ER, ad quadratum, ST. </
s
>
<
s
xml:id
="
echoid-s5838
"
xml:space
="
preserve
">Ve-
<
lb
/>
rum ſi in ellipſi diametri non ſint axes, vice cubi, AB, concludemus
<
lb
/>
omnia quadrata, AD, adrectangula ſub portione, ASB, & </
s
>
<
s
xml:id
="
echoid-s5839
"
xml:space
="
preserve
">quadri-
<
lb
/>
lineo, AHTFB, eſſe vt parallelepipedum ſub altitudine, AB, baſi
<
lb
/>
rhombo quod ab ipſa, AB, deſeribitur, ad ſui ipſius eam partem, ad
<
lb
/>
quam eiuſdem parallelepipedi pars ſexta ſit veluti quadratum, ER, ad
<
lb
/>
quadratum, ST,</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>