Clavius, Christoph
,
Geometria practica
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
>
151
(121)
152
(122)
153
(123)
154
(124)
155
(125)
156
(126)
157
(127)
158
(128)
159
(129)
160
(130)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
>
page
|<
<
(229)
of 450
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div657
"
type
="
section
"
level
="
1
"
n
="
231
">
<
p
>
<
s
xml:id
="
echoid-s10606
"
xml:space
="
preserve
">
<
pb
o
="
229
"
file
="
259
"
n
="
259
"
rhead
="
LIBER QVINTVS.
"/>
cap Num. </
s
>
<
s
xml:id
="
echoid-s10607
"
xml:space
="
preserve
">1. </
s
>
<
s
xml:id
="
echoid-s10608
"
xml:space
="
preserve
">minor ſit proportio cubi datæ diametri ad ſphæram, quàm 426. </
s
>
<
s
xml:id
="
echoid-s10609
"
xml:space
="
preserve
">ad
<
lb
/>
223. </
s
>
<
s
xml:id
="
echoid-s10610
"
xml:space
="
preserve
">Sit autem cubus diametri datæ ad procreatum numerum, vt 426. </
s
>
<
s
xml:id
="
echoid-s10611
"
xml:space
="
preserve
">ad 223.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s10612
"
xml:space
="
preserve
">habebit quo que cubus datæ diametri ad ſphæram, proportionem minorem,
<
lb
/>
<
note
symbol
="
a
"
position
="
right
"
xlink:label
="
note-259-01
"
xlink:href
="
note-259-01a
"
xml:space
="
preserve
">10. quinti.</
note
>
quàm idem cubus ad numerum genitum. </
s
>
<
s
xml:id
="
echoid-s10613
"
xml:space
="
preserve
"> Quare minor erit numerus produ- ctus, quàm vera ſoliditas ſphęræ.</
s
>
<
s
xml:id
="
echoid-s10614
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div659
"
type
="
section
"
level
="
1
"
n
="
232
">
<
head
xml:id
="
echoid-head249
"
xml:space
="
preserve
">DE AREA SEGMENTO-
<
lb
/>
rum ſphæræ.</
head
>
<
head
xml:id
="
echoid-head250
"
xml:space
="
preserve
">
<
emph
style
="
sc
">Capvt</
emph
>
VI.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s10615
"
xml:space
="
preserve
">I. </
s
>
<
s
xml:id
="
echoid-s10616
"
xml:space
="
preserve
">HEMISPHER II ſuperfici{es} conuexa, excluſa baſe, gignitur ex area ma-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-259-02
"
xlink:href
="
note-259-02a
"
xml:space
="
preserve
">Superfici{es} cõ-
<
lb
/>
uexa Hemi-
<
lb
/>
ſphærii.</
note
>
ximi circuli per 2. </
s
>
<
s
xml:id
="
echoid-s10617
"
xml:space
="
preserve
">multiplicata. </
s
>
<
s
xml:id
="
echoid-s10618
"
xml:space
="
preserve
">Vel ex ſemidiametro in circumferentiã ma-
<
lb
/>
ximi circuli. </
s
>
<
s
xml:id
="
echoid-s10619
"
xml:space
="
preserve
">Vel denique ex tota diametro in ſemiſſem circumferentiæ ma-
<
lb
/>
ximi circuli. </
s
>
<
s
xml:id
="
echoid-s10620
"
xml:space
="
preserve
">Quæ omnia perſpicua ſunt ex 1. </
s
>
<
s
xml:id
="
echoid-s10621
"
xml:space
="
preserve
">regula Num. </
s
>
<
s
xml:id
="
echoid-s10622
"
xml:space
="
preserve
">2. </
s
>
<
s
xml:id
="
echoid-s10623
"
xml:space
="
preserve
">capitis 5. </
s
>
<
s
xml:id
="
echoid-s10624
"
xml:space
="
preserve
">propterea
<
lb
/>
quod hi numeri producti ſunt ſemiſſes illorum, qui ſuperficiem conuexam to-
<
lb
/>
tius ſphęræ in earegula exhibuerunt.</
s
>
<
s
xml:id
="
echoid-s10625
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s10626
"
xml:space
="
preserve
">2. </
s
>
<
s
xml:id
="
echoid-s10627
"
xml:space
="
preserve
">SVPERFICIES conuexa cuiuſlibet portionis ſphæræ hemiſphærio minoris,
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-259-03
"
xlink:href
="
note-259-03a
"
xml:space
="
preserve
">Superfici{es} cõ-
<
lb
/>
uexæ portio-
<
lb
/>
nis ſphæræ.</
note
>
velmaioris, dempta baſe, æqualis eſt circulo, cui{us} ſemidiameter æqualis eſt rectæ lineæ,
<
lb
/>
quæ à vertice portionis ad circumferentiam baſis ducitur. </
s
>
<
s
xml:id
="
echoid-s10628
"
xml:space
="
preserve
">ex propoſ. </
s
>
<
s
xml:id
="
echoid-s10629
"
xml:space
="
preserve
">40. </
s
>
<
s
xml:id
="
echoid-s10630
"
xml:space
="
preserve
">lib. </
s
>
<
s
xml:id
="
echoid-s10631
"
xml:space
="
preserve
">1. </
s
>
<
s
xml:id
="
echoid-s10632
"
xml:space
="
preserve
">Archime-
<
lb
/>
dis de ſphæra, & </
s
>
<
s
xml:id
="
echoid-s10633
"
xml:space
="
preserve
">cylindro. </
s
>
<
s
xml:id
="
echoid-s10634
"
xml:space
="
preserve
">Sit enim maximus in ſphęra circulus ABCD, cuius dia-
<
lb
/>
meter AC, quàm in E, ad angulos rectos ſecet B D, recta, per quam intelligatur
<
lb
/>
duciplanum diametro ad angulos rectos, ſecans ſphæram in duas portiones,
<
lb
/>
quarum baſis communis circulus diametri B D, & </
s
>
<
s
xml:id
="
echoid-s10635
"
xml:space
="
preserve
">A, vertex minoris portionis,
<
lb
/>
maioris autem vertex C. </
s
>
<
s
xml:id
="
echoid-s10636
"
xml:space
="
preserve
">Iunctis autem rectis AB, CB; </
s
>
<
s
xml:id
="
echoid-s10637
"
xml:space
="
preserve
">erit circulus ſemidiametri
<
lb
/>
A B, ſuperficiei conuexæ minoris portionis, & </
s
>
<
s
xml:id
="
echoid-s10638
"
xml:space
="
preserve
">circulus ſemidiametri C B, con-
<
lb
/>
uexę ſuperficiei maioris portionis ęqualis, ex dicta propoſ. </
s
>
<
s
xml:id
="
echoid-s10639
"
xml:space
="
preserve
">Ar-
<
lb
/>
<
figure
xlink:label
="
fig-259-01
"
xlink:href
="
fig-259-01a
"
number
="
165
">
<
image
file
="
259-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/xxxxxxxx/figures/259-01
"/>
</
figure
>
chimedis. </
s
>
<
s
xml:id
="
echoid-s10640
"
xml:space
="
preserve
">Quare ſi vtraque AB, CB, in partibus diametri A C,
<
lb
/>
fiat nota, præſertim ope inſtrumenti partium cap. </
s
>
<
s
xml:id
="
echoid-s10641
"
xml:space
="
preserve
">1. </
s
>
<
s
xml:id
="
echoid-s10642
"
xml:space
="
preserve
">lib. </
s
>
<
s
xml:id
="
echoid-s10643
"
xml:space
="
preserve
">1. </
s
>
<
s
xml:id
="
echoid-s10644
"
xml:space
="
preserve
">con-
<
lb
/>
ſtructi, & </
s
>
<
s
xml:id
="
echoid-s10645
"
xml:space
="
preserve
">areę circulorum ad interualla ſemidiametrorum AB,
<
lb
/>
CB, deſciptorum inueſtigentur, per ea, quę lib. </
s
>
<
s
xml:id
="
echoid-s10646
"
xml:space
="
preserve
">4. </
s
>
<
s
xml:id
="
echoid-s10647
"
xml:space
="
preserve
">capit. </
s
>
<
s
xml:id
="
echoid-s10648
"
xml:space
="
preserve
">7. </
s
>
<
s
xml:id
="
echoid-s10649
"
xml:space
="
preserve
">ſcri-
<
lb
/>
pſimus; </
s
>
<
s
xml:id
="
echoid-s10650
"
xml:space
="
preserve
">notæ erunt ſuperficies conuexæ dictarum portionum
<
lb
/>
ſphęræ.</
s
>
<
s
xml:id
="
echoid-s10651
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s10652
"
xml:space
="
preserve
">
<
emph
style
="
sc
">Eadem</
emph
>
ſuperficies conuexa portionis ſphærę hemiſphęrio minoris, vel ma-
<
lb
/>
ioris, ita quoque cognoſcetur. </
s
>
<
s
xml:id
="
echoid-s10653
"
xml:space
="
preserve
">Ex demonſtratis ab Archimede propoſ. </
s
>
<
s
xml:id
="
echoid-s10654
"
xml:space
="
preserve
">3. </
s
>
<
s
xml:id
="
echoid-s10655
"
xml:space
="
preserve
">lib. </
s
>
<
s
xml:id
="
echoid-s10656
"
xml:space
="
preserve
">2.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s10657
"
xml:space
="
preserve
">de ſphęra, & </
s
>
<
s
xml:id
="
echoid-s10658
"
xml:space
="
preserve
">cylindro, eandem proportionem habet EC, ad EA, quam ſuperfi-
<
lb
/>
cies conuexa portionis ſphęræ baſem habentis circulum diametri BD, & </
s
>
<
s
xml:id
="
echoid-s10659
"
xml:space
="
preserve
">verticẽ
<
lb
/>
C, ad ſuperficiem conuexam portionis baſem habentis eundem circulum dia-
<
lb
/>
metri BD, & </
s
>
<
s
xml:id
="
echoid-s10660
"
xml:space
="
preserve
">verticem A. </
s
>
<
s
xml:id
="
echoid-s10661
"
xml:space
="
preserve
">Igitur componendo quoq; </
s
>
<
s
xml:id
="
echoid-s10662
"
xml:space
="
preserve
">erit, vt tota diameter A C,
<
lb
/>
ad AE, ita ſuperficies conuexa totius ſphęræ ad ſuperficiem cõuexam portionis
<
lb
/>
B A D. </
s
>
<
s
xml:id
="
echoid-s10663
"
xml:space
="
preserve
">Eademq; </
s
>
<
s
xml:id
="
echoid-s10664
"
xml:space
="
preserve
">ratione erit, vt tota diameter A C, ad E C, ita conuexa ſuperfici-
<
lb
/>
es totius ſphęræ ad ſuperficiem conuexam portionis BCD. </
s
>
<
s
xml:id
="
echoid-s10665
"
xml:space
="
preserve
">Quo circainueſti-
<
lb
/>
gata proportione diametri A C, ad ſegmenta AE, EC, per inſtrumentum partium
<
lb
/>
cap. </
s
>
<
s
xml:id
="
echoid-s10666
"
xml:space
="
preserve
">1. </
s
>
<
s
xml:id
="
echoid-s10667
"
xml:space
="
preserve
">lib. </
s
>
<
s
xml:id
="
echoid-s10668
"
xml:space
="
preserve
">1. </
s
>
<
s
xml:id
="
echoid-s10669
"
xml:space
="
preserve
">conſtructum; </
s
>
<
s
xml:id
="
echoid-s10670
"
xml:space
="
preserve
">ſi fiat, vt diameter AC, ad AE, ita ſuperficies conuexa
<
lb
/>
totius ſphęræ, (quæ ex regula 1. </
s
>
<
s
xml:id
="
echoid-s10671
"
xml:space
="
preserve
">Nume. </
s
>
<
s
xml:id
="
echoid-s10672
"
xml:space
="
preserve
">2. </
s
>
<
s
xml:id
="
echoid-s10673
"
xml:space
="
preserve
">cap. </
s
>
<
s
xml:id
="
echoid-s10674
"
xml:space
="
preserve
">5. </
s
>
<
s
xml:id
="
echoid-s10675
"
xml:space
="
preserve
">huius lib. </
s
>
<
s
xml:id
="
echoid-s10676
"
xml:space
="
preserve
">cognita fiet) ad </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>