Clavius, Christoph, In Sphaeram Ioannis de Sacro Bosco commentarius
page |< < (225) of 525 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div451" type="section" level="1" n="145">
          <p>
            <s xml:id="echoid-s9127" xml:space="preserve">
              <pb o="225" file="261" n="262" rhead="Ioan. de Sacro Boſco."/>
            ad angulos inæquales, & </s>
            <s xml:id="echoid-s9128" xml:space="preserve">obliquos ſecant: </s>
            <s xml:id="echoid-s9129" xml:space="preserve">quales ſunt apud ipſum Zodiacus,
              <lb/>
            & </s>
            <s xml:id="echoid-s9130" xml:space="preserve">circulus lacteus, quibus adiungendus eſt Horizon quicunque obliquus. </s>
            <s xml:id="echoid-s9131" xml:space="preserve">Il-
              <lb/>
            los denique per polos mundi duci ait, qui parallelos circulos, ſeu ęquidiſtan-
              <lb/>
            tes ad angulos rectos, ac bifariam diuidunt; </s>
            <s xml:id="echoid-s9132" xml:space="preserve">qui numero ſunt cres, Colurus ſol
              <lb/>
            ſtitiorum, Colurus æquinoctiorum, & </s>
            <s xml:id="echoid-s9133" xml:space="preserve">Meridianus, quibus adiungi poteſt Ho-
              <lb/>
            rizon rectus.</s>
            <s xml:id="echoid-s9134" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s9135" xml:space="preserve">
              <emph style="sc">Nonnvlli</emph>
            alij circulos cœleſtes alia ratione diuidunt. </s>
            <s xml:id="echoid-s9136" xml:space="preserve">Dicunt enim,
              <lb/>
              <note position="right" xlink:label="note-261-01" xlink:href="note-261-01a" xml:space="preserve">Alia diui-
                <lb/>
              ſio circulo
                <lb/>
              rũ ſphęræ.</note>
            alios circulos eſſe intrinſecos, alios uero extrinſecos Intrinſeci ſunt, qui in cę-
              <lb/>
            lo f
              <unsure/>
            ixi omnino concipiuntur, ita ut uná cum eo circumducantur. </s>
            <s xml:id="echoid-s9137" xml:space="preserve">Inde a qui-
              <lb/>
            buſdam mobiles nominantur, quales ſunt omnes circuli primarij ſphæræ, ex-
              <lb/>
            cepto Meridiano, & </s>
            <s xml:id="echoid-s9138" xml:space="preserve">Horizonte. </s>
            <s xml:id="echoid-s9139" xml:space="preserve">Hi enim duo extrinſeci dicuntur, quia ita in
              <lb/>
            cœlo concipiendi ſunt, ut ſemper firmum ſitum obtineant, & </s>
            <s xml:id="echoid-s9140" xml:space="preserve">nulla ratione ad
              <lb/>
            motum cœli circumuoluantur, ſed ſemper in eodem loco permaneant. </s>
            <s xml:id="echoid-s9141" xml:space="preserve">Qua
              <lb/>
            de cauſa à pleriſque immobiles dicti fuere.</s>
            <s xml:id="echoid-s9142" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s9143" xml:space="preserve">
              <emph style="sc">Exemplvm</emph>
            decem circulorum ſphærę, qui primarij dicuntur, habes in
              <lb/>
            propoſita figura, quæ ſphæram materialem repræſentat.</s>
            <s xml:id="echoid-s9144" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div454" type="section" level="1" n="146">
          <head xml:id="echoid-head151" style="it" xml:space="preserve">DE AEQVINOCTI ALI CIRCVLO.</head>
          <p style="it">
            <s xml:id="echoid-s9145" xml:space="preserve">EST igitur Aequinoctialis circulus quidam diuidens ſphæram,
              <lb/>
            in duo æqualia ſecundum quamlibet ſui partem æque diſtans
              <lb/>
            ab utroque polo.</s>
            <s xml:id="echoid-s9146" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div455" type="section" level="1" n="147">
          <head xml:id="echoid-head152" xml:space="preserve">COMMENTARIS.</head>
          <p>
            <s xml:id="echoid-s9147" xml:space="preserve">
              <emph style="sc">ABsolvta</emph>
            prima parte huius capitis, aggreditur iam ſecun-
              <lb/>
              <note position="right" xlink:label="note-261-02" xlink:href="note-261-02a" xml:space="preserve">Aequino-
                <lb/>
              ctialis circu
                <lb/>
              lus quid.</note>
            dam partem, in qua ſigillatim de omnibus circulis diſſeritur. </s>
            <s xml:id="echoid-s9148" xml:space="preserve">Agit
              <lb/>
            autem prius de circulis maximis, deinde de non maximis: </s>
            <s xml:id="echoid-s9149" xml:space="preserve">Et in-
              <lb/>
            ter maximos primo loco explicat Æquinoctialem circulum, quo-
              <lb/>
            niam cognitio eius facilior eſt, & </s>
            <s xml:id="echoid-s9150" xml:space="preserve">reliqui fere omnes per ipſum
              <lb/>
            explicari ſolent. </s>
            <s xml:id="echoid-s9151" xml:space="preserve">Eſt quoque circulus Aequinoctialis omnium nobiliſſimus,
              <lb/>
            cum ſit menſura, ut mox dicetur, motus nobiliſſimi, nem pe primi mobilis;
              <lb/>
            </s>
            <s xml:id="echoid-s9152" xml:space="preserve">Mouetur enim motu maxime æquabili: </s>
            <s xml:id="echoid-s9153" xml:space="preserve">Vnde ita ſeſe habet hic circulus cum
              <lb/>
            alijs circulis cœleſtibus comparatus, quemadmodum primum mobile colla-
              <lb/>
            tum cum alijs orbibus cœleſtibus. </s>
            <s xml:id="echoid-s9154" xml:space="preserve">Quamobrem Philoſophi primum motorẽ,
              <lb/>
            ideſt, Deum Opt. </s>
            <s xml:id="echoid-s9155" xml:space="preserve">Max. </s>
            <s xml:id="echoid-s9156" xml:space="preserve">in circulo Aequinoctiali, tamquam in ſede propria
              <lb/>
            collocabant.</s>
            <s xml:id="echoid-s9157" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s9158" xml:space="preserve">
              <emph style="sc">Definit</emph>
            igitur circulum Ae quinoctinoctialem dicens, eũ circulũ in ſphæ
              <lb/>
            ra materiali appellari Aequinoctialem, qui ſphæram in duas partes æquales
              <lb/>
            diuidit, æqualiterq́ue ab utroque polo ſecundum omnem ſui partem diſtat.
              <lb/>
            </s>
            <s xml:id="echoid-s9159" xml:space="preserve">Atque hic eadem ratione in cœlo erit concipiendus collocari in medio inter
              <lb/>
            duos mundi polos.</s>
            <s xml:id="echoid-s9160" xml:space="preserve"/>
          </p>
          <note position="right" xml:space="preserve">Qũo Aequi
            <lb/>
          noctialis.
            <lb/>
          circulus in
            <lb/>
          cęlo deſcri-
            <lb/>
          bi concipia
            <lb/>
          tur.</note>
          <p>
            <s xml:id="echoid-s9161" xml:space="preserve">
              <emph style="sc">Qvem</emph>
            quidem nonnulli ita concipiunt deſcribi. </s>
            <s xml:id="echoid-s9162" xml:space="preserve">A centro mundi per
              <lb/>
            centrum Solis, dum eſt in principio ♈@uel ♎. </s>
            <s xml:id="echoid-s9163" xml:space="preserve">imaginantur duci lineam rectã,
              <lb/>
            quæ ſpatio 24. </s>
            <s xml:id="echoid-s9164" xml:space="preserve">horarum deſcribat circulum Aequinoctialem. </s>
            <s xml:id="echoid-s9165" xml:space="preserve">Sed quoniam
              <lb/>
            Sol nunquam perficit integrum circulum, cum non ad idẽ punctum </s>
          </p>
        </div>
      </text>
    </echo>