Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

Table of figures

< >
[Figure 311]
[Figure 312]
[Figure 313]
[Figure 314]
[Figure 315]
[Figure 316]
[Figure 317]
[Figure 318]
[Figure 319]
[Figure 320]
[Figure 321]
[Figure 322]
[Figure 323]
[Figure 324]
[Figure 325]
[Figure 326]
[Figure 327]
[Figure 328]
[Figure 329]
[Figure 330]
[Figure 331]
[Figure 332]
[Figure 333]
[Figure 334]
[Figure 335]
[Figure 336]
[Figure 337]
[Figure 338]
[Figure 339]
[Figure 340]
< >
page |< < (228) of 458 > >|
266228Apollonij Pergæi igitur G A æqualis eſt L D: & quia in triangulis ſimilibus rectangulum B A
C ad quadratum B C, ſeu A G ad latus rectum G R eandem proportionem ha-
1111. lib. 1. bet;
quàm rectangulum E D F ad quadratum E F, ſeu quàm D L habet ad la-
tus rectum L S;
igitur A G ad G R erit vt D L ad L S; ſuntq; A G, D L
oſtenſæ æquales ergo G R, &
L S latera recta æqualia ſunt, & diametri ſectio-
num eſſiciunt angulos G O H, L K M æquales;
ergo parabolæ H G I, & M L N
22Prop 10.
huius.
æquales ſunt inter ſe.
313[Figure 313]
In hyperbolis verò, quoniam P G parallela eſt axi A Y, & A V parallela,
eſt baſi B C, &
latera P B, & A C ſunt communia; igitur P V ad V A eſt vt
A Y ad Y B, &
G V ad V A eſt vt Y A ad Y C: habet verò eadem A Y ad
æquales Y B, Y C eandem rationem ergò P V, &
G V ad eandem V A habent
eandem proportionem, &
ideo P V æqualis eſt V G, atq; punctum V erit cen-
trum ſectionis, &
quadratum A Y æquale erit quadrato V O (propter paral-
lelogrammum V Y), &
quadratum V O æquale eſt rectangulo P O G cum qua-
drato V G;
pariterque quadratum C Y æquale eſt rectangulo C O B cum qua
drato O Y, &
habet quadratum A Y ad quadratum C Y eandem proportionem,
quàm latus tranſuer ſum P G ad latus rectum G R, ſeu eandem, quàm habet
3321. lib.1. rectangulum P O G ad rectangulum C O B, ergo diuidendo quadratum V G ad
quadratũ O Y eandem proportionem habebit, quàm quadratum A Y ad quadratũ
Y C, ſeu vt P G ad G R, ſeu vt quadratum P G ad rectangulum P G R,
&
ideo quadratum duplæ V G, ſeu P G eandem proportionem habebit ad re-
ctangulum P G R, atq;
ad quadratum duplæ ipſius Y O; quare quadratum duplæ
ipſius O Y æquale erit figuræ ſectionis ſeu rectangulo P G R.
Eodem modo
oſtendetur X centrum hyperbolæ M L N, &
quadratum L Z ad quadratum du-
ple K Z eſſe vt quadratum D Z ad quadratum Z F, ſeu vt Z L ad L S, &

ideo quadratum duplæ ipſius K Z æquale erit figuræ ſectionis, ſeu rectangulo Z
L S.
Tandem, quia propter ſimilitudinem triangulorum per axes, ſunt anguli
C, F æquales, &
anguli Y, Z pariter æquales ( cum ex hypotheſi diametri G O,
L K parallelæ axibus AY, D Z efficiant angulos G O C, L K F æquales);
ergo
A Y ad Y C erit vt D Z ad Z F, &
earum quadrata etiam proportionalia
erunt;
ſed P G ad G R eſt vt quadratum A Y ad quadratum Y C, atque Z

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index