Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
31 19
32 20
33 21
34 22
35 23
36 24
37 25
38 26
39 27
40 28
41 29
42 30
43 31
44 32
45 33
46 34
47 35
48 36
49 37
50 38
51 39
52 40
53 41
54 42
55 43
56 44
57 45
58 46
59 47
60 48
< >
page |< < (15) of 445 > >|
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div7" type="chapter" level="2" n="1">
            <div xml:id="echoid-div48" type="math:theorem" level="3" n="21">
              <p>
                <s xml:id="echoid-s216" xml:space="preserve">
                  <pb o="15" rhead="THEOREM. ARIT." n="27" file="0027" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0027"/>
                eſſe
                  <reg norm="producto" type="simple">ꝓducto</reg>
                  <var>.q.p.</var>
                in
                  <var>.g.k.</var>
                  <reg norm="quod" type="wordlist">qđ</reg>
                  <reg norm="autem" type="context">autẽ</reg>
                ſit
                  <var>.o</var>
                . </s>
                <s xml:id="echoid-s217" xml:space="preserve">Patet enim
                  <reg norm="proportionem" type="context">proportionẽ</reg>
                  <var>.o.</var>
                ad
                  <var>.q.p.</var>
                  <reg norm="eandem" type="context">eandẽ</reg>
                eſſe
                  <lb/>
                cum proportione
                  <var>.g.k.</var>
                ad ſuam vnitatem linearem, ex decimaoctaua, aut decima-
                  <lb/>
                nona ſeptimi, hæc vero vnitas linearis ſit
                  <var>.t.</var>
                cuius ſuperficialis ſit
                  <var>.u.</var>
                vnitas ſcilicet to-
                  <lb/>
                ties in ſeipſam multiplicata quoties propoſita dignitas patitur, tametſi in præſen
                  <lb/>
                ti exemplo quadrata dignitas ſumatur. </s>
                <s xml:id="echoid-s218" xml:space="preserve">
                  <reg norm="Itaque" type="simple">Itaq;</reg>
                ex eiſdem propoſitionibus decimaocta
                  <lb/>
                ua aut decimanona, ſic ſe habet
                  <var>.m.</var>
                ad
                  <var>.n.</var>
                ſicut
                  <var>.i.</var>
                ad
                  <var>.u</var>
                . </s>
                <s xml:id="echoid-s219" xml:space="preserve">Scimus pręterea
                  <reg norm="proportionem" type="context">proportionẽ</reg>
                  <var>.
                    <lb/>
                  m.</var>
                ad
                  <var>.n.</var>
                (eo quod in propoſito exemplo ſint quadrata) duplam eſſe proportioni
                  <var>.b.
                    <lb/>
                  d.</var>
                ad
                  <var>.q.p.</var>
                et ipſius
                  <var>.i.</var>
                ad
                  <var>.u.</var>
                pariter duplam proportioni
                  <var>.g.k.</var>
                ad
                  <var>.t.</var>
                iam autem dictum
                  <lb/>
                fuit ſic ſe habere
                  <var>.m.</var>
                ad
                  <var>.n.</var>
                ſicut
                  <var>.i.</var>
                ad
                  <var>.u</var>
                . </s>
                <s xml:id="echoid-s220" xml:space="preserve">
                  <reg norm="Itaque" type="simple">Itaq;</reg>
                  <var>.
                    <lb/>
                  b.d.</var>
                ſic ſe habebit ad
                  <var>.q.p.</var>
                ſicut
                  <var>.g.k.</var>
                ad
                  <var>.t.</var>
                  <lb/>
                  <figure xlink:label="fig-0027-01" xlink:href="fig-0027-01a" number="31">
                    <image file="0027-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0027-01"/>
                  </figure>
                quandoquidem ſic ſe habeattotum ad
                  <reg norm="to- tum" type="context">to-
                    <lb/>
                  tũ</reg>
                , ſicut pars ad
                  <reg norm="partem" type="context">partẽ</reg>
                ,
                  <reg norm="dum" type="context">dũ</reg>
                ſimiles ſint, proba
                  <lb/>
                  <reg norm="tum" type="context">tũ</reg>
                  <reg norm="autem" type="context">autẽ</reg>
                eſt ſuperius ita ſe habere
                  <var>.o.</var>
                ad
                  <var>.q.p.</var>
                  <lb/>
                ſicut
                  <var>.g.k.</var>
                ad
                  <var>.t.</var>
                  <reg norm="itaque" type="simple">itaq;</reg>
                  <var>.o.</var>
                ſic ſe habebit ad
                  <var>.q.p.</var>
                  <lb/>
                ſicut
                  <var>.b.d.</var>
                ad
                  <var>.q.p.</var>
                vnde
                  <var>.o.</var>
                æqualis erit
                  <var>.b.d.</var>
                  <lb/>
                Hocipſum cęteris dignitatibus conueniet,
                  <lb/>
                mutatis tantummodo proportionibus
                  <var>.m.
                    <lb/>
                  n.</var>
                ad proportionem
                  <var>.b.d</var>
                :
                  <var>q.p.</var>
                ſic propor-
                  <lb/>
                tionibus duarum dignitatum
                  <var>.i.u.</var>
                ad pro-
                  <lb/>
                portionem ſuarum radicum
                  <var>.g.k.t</var>
                .</s>
              </p>
            </div>
            <div xml:id="echoid-div50" type="math:theorem" level="3" n="22">
              <head xml:id="echoid-head38" xml:space="preserve">THEOREMA
                <num value="22">XXII</num>
              .</head>
              <p>
                <s xml:id="echoid-s221" xml:space="preserve">
                  <emph style="sc">DOcent</emph>
                veteres, quòd ſi quilibet numerus in duas partes inæquales diuiſus
                  <lb/>
                fuerit,
                  <reg norm="totumque" type="simple">totumq́</reg>
                diuiſum per
                  <reg norm="vnam" type="context">vnã</reg>
                partium, & per eandem pars altera diuiſa fue-
                  <lb/>
                rit: </s>
                <s xml:id="echoid-s222" xml:space="preserve">differentia prouenientium ſemper vnitas erit. </s>
                <s xml:id="echoid-s223" xml:space="preserve">quodquidem veriſſimum eſt.</s>
              </p>
              <p>
                <s xml:id="echoid-s224" xml:space="preserve">Detur enim
                  <var>.b.d.</var>
                propoſitus numerus in duas partes inæquales diuiſus
                  <var>.b.c.</var>
                et
                  <var>.c.d.</var>
                  <lb/>
                & in primis
                  <reg norm="totum" type="context">totũ</reg>
                  <var>.b.d.</var>
                per
                  <var>.c.d.</var>
                diuidatur, ex quo oriatur
                  <var>e.o.</var>
                vnitas autem
                  <reg norm="per" type="punctuation simple">.ꝑ</reg>
                  <var>.i.o.</var>
                ſigni-
                  <lb/>
                ficetur, tum pars ipſa
                  <var>.b.c.</var>
                  <reg norm="per" type="simple punctuation">ꝑ.</reg>
                  <reg norm="eandem" type="context">eãdem</reg>
                  <var>.c.d.</var>
                diuidatur,
                  <reg norm="ſitque" type="simple">ſitq́;</reg>
                  <reg norm="proueniens" type="context">proueniẽs</reg>
                  <var>.a</var>
                . </s>
                <s xml:id="echoid-s225" xml:space="preserve">Sanè ex defini-
                  <lb/>
                tione diuiſionis, eadem erit proportio
                  <var>.b.d.</var>
                ad
                  <var>.e.o.</var>
                quæ eſt
                  <var>.c.d.</var>
                ad
                  <var>.i.o.</var>
                et ita
                  <var>.b.c.</var>
                ad
                  <var>.a.</var>
                  <lb/>
                ſicut
                  <var>.c.d.</var>
                ad
                  <var>.i.o</var>
                . </s>
                <s xml:id="echoid-s226" xml:space="preserve">Ex
                  <ref id="ref-0009">.19. autem quinti</ref>
                , ita ſe habet
                  <var>.b.c.</var>
                ad
                  <var>.e.i.</var>
                ſicut
                  <var>.b.d.</var>
                ad
                  <var>.e.o.</var>
                at
                  <var>.b.d.</var>
                  <lb/>
                ad
                  <var>.e.o.</var>
                ſic ſe habet ſicut
                  <var>.c.d.</var>
                ad
                  <var>.i.o.</var>
                hoc eſt ſicut
                  <var>.b.c.</var>
                ad
                  <var>.a</var>
                . </s>
                <s xml:id="echoid-s227" xml:space="preserve">Quare ex .11. quinti ſic ſe
                  <lb/>
                habebit
                  <var>.b.c.</var>
                ad
                  <var>.e.i.</var>
                ſicut .ad
                  <var>.a.</var>
                ex quo ex .9.
                  <reg norm="praedi­ cti" type="simple">prędi­
                    <lb/>
                  cti</reg>
                  <var>.a.</var>
                æqualis erit
                  <var>.e.i.</var>
                ſed
                  <var>.e.i.</var>
                minor eſt
                  <var>.e.o.</var>
                  <lb/>
                  <figure xlink:label="fig-0027-02" xlink:href="fig-0027-02a" number="32">
                    <image file="0027-02" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0027-02"/>
                  </figure>
                per
                  <var>.i.o</var>
                . </s>
                <s xml:id="echoid-s228" xml:space="preserve">Quare ſequitur propoſitum verum eſ­
                  <lb/>
                ſe. </s>
                <s xml:id="echoid-s229" xml:space="preserve">Quod ipſum pauciſſimis verbis ſic definiri
                  <lb/>
                poteſt, ſi dixerimus, eiuſmodi diuidens .in par-
                  <lb/>
                te diuiſibili,
                  <reg norm="quam" type="context">quã</reg>
                in toto, ſemel minus ingredi,
                  <lb/>
                quandoquidem altera pars eſt, ex qua totum integrum perficitur.</s>
              </p>
            </div>
            <div xml:id="echoid-div52" type="math:theorem" level="3" n="23">
              <head xml:id="echoid-head39" xml:space="preserve">THEOREMA
                <num value="23">XXIII</num>
              .</head>
              <p>
                <s xml:id="echoid-s230" xml:space="preserve">HOcipſum alia ratione contemplari po­
                  <lb/>
                  <figure xlink:label="fig-0027-03" xlink:href="fig-0027-03a" number="33">
                    <image file="0027-03" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0027-03"/>
                  </figure>
                terimus.</s>
              </p>
              <p>
                <s xml:id="echoid-s231" xml:space="preserve">Significetur enim totalis numerus per
                  <var>.a.e.</var>
                  <lb/>
                in duas partes diuiſus
                  <var>.a.u.</var>
                et
                  <var>.u.e.</var>
                totius autem diuidens ſit
                  <var>.u.e.</var>
                & partis alterius
                  <var>.a.u.</var>
                  <lb/>
                totius verò
                  <reg norm="proueniens" type="context">proueniẽs</reg>
                ſit
                  <var>.a.c.</var>
                partis
                  <reg norm="autem" type="context">autẽ</reg>
                , ſit
                  <reg norm="proueniens" type="context">proueniẽs</reg>
                  <var>.a.n.</var>
                tum differentia ſit
                  <var>.n.c.</var>
                vni </s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>