Archimedes, Natation of bodies, 1662

Page concordance

< >
Scan Original
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
< >
page |< < of 68 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s>
                <pb xlink:href="073/01/027.jpg" pagenum="356"/>
                <emph type="italics"/>
              For if, the Line B R being prolonged unto G, G R hath the ſame proportion to R B as the Por­
                <lb/>
              tion of the Conoid I P O S hath to the remaining Figure that lyeth above the Surface of the
                <lb/>
              Liquid, the Toine G ſhall be its Centre of Gravity; by the 8 of the ſecond of
                <emph.end type="italics"/>
              Archimedes
                <lb/>
              de Centro Gravitatis Planorum, vel de
                <emph type="italics"/>
              Æ
                <emph.end type="italics"/>
              quiponderantibus.
                <lb/>
                <arrow.to.target n="marg1177"/>
              </s>
            </p>
            <p type="margin">
              <s>
                <margin.target id="marg1176"/>
              D</s>
            </p>
            <p type="margin">
              <s>
                <margin.target id="marg1177"/>
              E</s>
            </p>
            <p type="main">
              <s>R O ſhall be leſs than
                <emph type="italics"/>
              quæ uſque ad Axem
                <emph.end type="italics"/>
              (or than the Semi­
                <lb/>
              parameter.]
                <emph type="italics"/>
              By the 10 Propofit. </s>
              <s>of
                <emph.end type="italics"/>
              Euclids
                <emph type="italics"/>
              fifth Book of Elements. </s>
              <s>The Line
                <emph.end type="italics"/>
              quæ
                <lb/>
              uſque ad Axem,
                <emph type="italics"/>
              (or the Semi-parameter) according to
                <emph.end type="italics"/>
              Archimedes,
                <emph type="italics"/>
              is the half of that
                <emph.end type="italics"/>
                <lb/>
              juxta quam poſſunt, quæ á Sectione ducuntur, (
                <emph type="italics"/>
              or of the Parameter;) as appeareth
                <lb/>
              by the 4 Propoſit of his Book
                <emph.end type="italics"/>
              De Conoidibus & Shpæroidibus:
                <emph type="italics"/>
              and for what reaſon it is
                <lb/>
              ſo called, we have declared in the Commentaries upon him by us publiſhed.
                <emph.end type="italics"/>
              </s>
            </p>
            <p type="main">
              <s>
                <arrow.to.target n="marg1178"/>
              </s>
            </p>
            <p type="margin">
              <s>
                <margin.target id="marg1178"/>
              F</s>
            </p>
            <p type="main">
              <s>Whereupon the Angle R P
                <foreign lang="grc">ω</foreign>
              ſhall be acute.]
                <emph type="italics"/>
              Let the Line N O be
                <lb/>
              continued out to H, that ſo RH may be equall to
                <lb/>
              the Semi-parameter. </s>
              <s>If now from the Point H
                <emph.end type="italics"/>
                <lb/>
                <figure id="id.073.01.027.1.jpg" xlink:href="073/01/027/1.jpg" number="22"/>
                <lb/>
                <emph type="italics"/>
              a Line be drawn at Right Angles to N H, it ſhall
                <lb/>
              meet with FP without the Section; for being
                <lb/>
              drawn thorow O parallel to A L, it ſhall fall
                <lb/>
              without the Section, by the 17 of our ſirst Book of
                <emph.end type="italics"/>
                <lb/>
              Conicks;
                <emph type="italics"/>
              Therefore let it meet in V: and
                <lb/>
              becauſe F P is parallel to the Diameter, and H
                <lb/>
              V perpendicular to the ſame Diameter, and R H
                <lb/>
              equall to the Semi-parameter, the Line drawn
                <lb/>
              from the Point R to V ſhall make Right Angles
                <lb/>
              with that Line which the Section toucheth in the Point P: that is with K
                <emph.end type="italics"/>
                <foreign lang="grc">ω,</foreign>
                <emph type="italics"/>
              as ſhall anon be
                <lb/>
              demonstrated: Wherefore the Perpendidulat R T falleth betwixt A and
                <emph.end type="italics"/>
                <foreign lang="grc">ω;</foreign>
                <emph type="italics"/>
              and the Argle R
                <emph.end type="italics"/>
                <lb/>
              P
                <foreign lang="grc">ω</foreign>
                <emph type="italics"/>
              ſhall be an Acute Angle.
                <emph.end type="italics"/>
              </s>
            </p>
            <p type="main">
              <s>Let A B C be the Section of a Rightangled Cone, or a Parabola,
                <lb/>
              and its Diameter B D; and let the Line E F touch the
                <lb/>
              ſame in the Point G: and in the Diameter B D take the Line
                <lb/>
              H K equall to the Semi-parameter: and thorow G, G L be­
                <lb/>
              ing drawn parallel to the Diameter, draw KM from the
                <lb/>
                <emph type="italics"/>
              P
                <emph.end type="italics"/>
              oint K at Right Angles to B D cutting G L in M: I ſay
                <lb/>
              that the Line prolonged thorow Hand Mis perpendicular to
                <lb/>
              E F, which it cutteth in N.</s>
            </p>
            <p type="main">
              <s>
                <emph type="italics"/>
              For from the Point G draw the Line G O at Right Angles to E F cutting the Diameter in
                <lb/>
              O: and again from the ſame Point draw G P perpendicular to the Diameter: and let the
                <lb/>
              ſaid Diameter prolonged cut the Line E F in
                <expan abbr="q.">que</expan>
              P B ſhall be equall to B Q, by the 35 of
                <emph.end type="italics"/>
              </s>
            </p>
            <p type="main">
              <s>
                <arrow.to.target n="marg1179"/>
                <lb/>
                <emph type="italics"/>
              our firſt Book of
                <emph.end type="italics"/>
              Conick
                <emph type="italics"/>
              Sections,
                <emph.end type="italics"/>
              (a)
                <emph type="italics"/>
              and G
                <emph.end type="italics"/>
                <lb/>
                <figure id="id.073.01.027.2.jpg" xlink:href="073/01/027/2.jpg" number="23"/>
                <lb/>
                <emph type="italics"/>
              P a Mean-proportion all betmixt Q P and PO
                <emph.end type="italics"/>
              ;
                <lb/>
                <arrow.to.target n="marg1180"/>
                <lb/>
              (b)
                <emph type="italics"/>
              and therefore the Square of G P ſhall be e­
                <lb/>
              quall to the Rectangle of O P Q: But it is alſo
                <lb/>
              equall to the Rectangle comprehended under P B
                <lb/>
              and the Line
                <emph.end type="italics"/>
              juxta quam poſſunt,
                <emph type="italics"/>
              or the Par­
                <lb/>
              ameter, by the 11 of our firſt Book of
                <emph.end type="italics"/>
              Conicks:
                <lb/>
                <arrow.to.target n="marg1181"/>
                <lb/>
              (c)
                <emph type="italics"/>
              Therefore, look what proportion Q P hath to
                <lb/>
              P B, and the ſame hath the Parameter unto P O:
                <lb/>
              But Q P is double unto
                <emph.end type="italics"/>
              P B,
                <emph type="italics"/>
              for that
                <emph.end type="italics"/>
              P B
                <emph type="italics"/>
              and B
                <lb/>
              Q are equall, as hath been ſaid: And therefore
                <lb/>
              the Parameter ſhall be double to the ſaid P O:
                <lb/>
              and by the ſame Reaſon P O is equall to that which we call the Semi-parameter, that is, to K H
                <emph.end type="italics"/>
              :
                <lb/>
                <arrow.to.target n="marg1182"/>
                <lb/>
                <emph type="italics"/>
              But
                <emph.end type="italics"/>
              (d)
                <emph type="italics"/>
              P G is equall to K M, and
                <emph.end type="italics"/>
              (e)
                <emph type="italics"/>
              the Angle O P G to the Angle H K M; for they are both
                <emph.end type="italics"/>
                <lb/>
                <arrow.to.target n="marg1183"/>
                <lb/>
                <emph type="italics"/>
              Right Angles: And therefore O G alſo is equall to H M, and the Angle P O G unto the
                <emph.end type="italics"/>
              </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>