Viviani, Vincenzo
,
De maximis et minimis, geometrica divinatio : in qvintvm Conicorvm Apollonii Pergaei
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 14
[out of range]
>
<
1 - 14
[out of range]
>
page
|<
<
(93)
of 347
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div802
"
type
="
section
"
level
="
1
"
n
="
316
">
<
p
>
<
s
xml:id
="
echoid-s7782
"
xml:space
="
preserve
">
<
pb
o
="
93
"
file
="
0279
"
n
="
279
"
rhead
="
"/>
diſpoſitum, ſintque omnia plana G M H, I N L, &</
s
>
<
s
xml:id
="
echoid-s7783
"
xml:space
="
preserve
">c. </
s
>
<
s
xml:id
="
echoid-s7784
"
xml:space
="
preserve
">quæ baſi A E C F
<
lb
/>
æquidiſtanter ducuntur per Acuminati A B C applicatas G H, I L, &</
s
>
<
s
xml:id
="
echoid-s7785
"
xml:space
="
preserve
">c.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s7786
"
xml:space
="
preserve
">ipſi baſi, ac inter ſe, ſimilia Acuminata, & </
s
>
<
s
xml:id
="
echoid-s7787
"
xml:space
="
preserve
">ſimiliter poſita, atque ipſæ
<
lb
/>
applicatæ G H, I L ſint eorundem Acuminatorum homologæ diametri: </
s
>
<
s
xml:id
="
echoid-s7788
"
xml:space
="
preserve
">
<
lb
/>
huiuſmodi figura SOLIDVM REGVLARE ACVMINATVM vocetur,
<
lb
/>
vel tantùm ACVMINATVM SOLIDVM; </
s
>
<
s
xml:id
="
echoid-s7789
"
xml:space
="
preserve
">A E C F verò BASIS ſoli-
<
lb
/>
di Acuminati; </
s
>
<
s
xml:id
="
echoid-s7790
"
xml:space
="
preserve
">ſed portionem A B C Acuminati plani intra Acuminatum
<
lb
/>
ſolidum interceptam (eò quod ipſa ſit tanquam Regula, vel Modulus,
<
lb
/>
aut Canon homologarum diametrorum ſimilium planorum ęquidiſtantium,
<
lb
/>
ac ſolidum procreantium) nuncupare liceat CANONEM ſolidi Acumina-
<
lb
/>
ti, qui ſi ad planum ba
<
unsure
/>
ſis A E C F rectus fuerit, dicatur CANON RECTVS
<
lb
/>
ſolidi Acuminati, & </
s
>
<
s
xml:id
="
echoid-s7791
"
xml:space
="
preserve
">B D diameter Canonis, nuncupetur quoque AXIS
<
lb
/>
ſolidi, & </
s
>
<
s
xml:id
="
echoid-s7792
"
xml:space
="
preserve
">eius VERTEX punctum B, in quod abit ſolidum, atque eiuſdem
<
lb
/>
ſolidi ALTITVDO dicatur recta B O, quæ à vertice B ſuper baſim A E C
<
lb
/>
F recta ducitur. </
s
>
<
s
xml:id
="
echoid-s7793
"
xml:space
="
preserve
">Plana verò A C, G H, I L, &</
s
>
<
s
xml:id
="
echoid-s7794
"
xml:space
="
preserve
">c. </
s
>
<
s
xml:id
="
echoid-s7795
"
xml:space
="
preserve
">dicantur PLANA OR-
<
lb
/>
DINATIM DVCTA ad axim ſolidi Acuminati.</
s
>
<
s
xml:id
="
echoid-s7796
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div803
"
type
="
section
"
level
="
1
"
n
="
317
">
<
head
xml:id
="
echoid-head326
"
xml:space
="
preserve
">III.</
head
>
<
p
>
<
s
xml:id
="
echoid-s7797
"
xml:space
="
preserve
">SOLIDA ACVMINATA PROPORTIONALIA dicantur illa, quo-
<
lb
/>
rum omnia plana ordinatim applicata per puncta, eorum axes proportio-
<
lb
/>
naliter diuidentia, ſint quoque inter ſe, & </
s
>
<
s
xml:id
="
echoid-s7798
"
xml:space
="
preserve
">baſibus proportionalia.</
s
>
<
s
xml:id
="
echoid-s7799
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s7800
"
xml:space
="
preserve
">Videlicet ſi duo ſolida Acumi-
<
lb
/>
<
figure
xlink:label
="
fig-0279-01
"
xlink:href
="
fig-0279-01a
"
number
="
229
">
<
image
file
="
0279-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/QN4GHYBF/figures/0279-01
"/>
</
figure
>
nata A B C, D E F, quorum baſes
<
lb
/>
ſint A G C I, L F H D axes verò
<
lb
/>
ſint B K, E O proportionaliter ſe-
<
lb
/>
cti in M, P; </
s
>
<
s
xml:id
="
echoid-s7801
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s7802
"
xml:space
="
preserve
">in N, Q; </
s
>
<
s
xml:id
="
echoid-s7803
"
xml:space
="
preserve
">ita vt K
<
lb
/>
M, ad M B ſit vt O P, ad P E; </
s
>
<
s
xml:id
="
echoid-s7804
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s7805
"
xml:space
="
preserve
">
<
lb
/>
K N ad N B, vt O Q ad Q E, &</
s
>
<
s
xml:id
="
echoid-s7806
"
xml:space
="
preserve
">c.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s7807
"
xml:space
="
preserve
">ſitque baſis A G C ad baſim L F H,
<
lb
/>
vt planum ordinatim applicatum
<
lb
/>
per M ad applicatum per P, & </
s
>
<
s
xml:id
="
echoid-s7808
"
xml:space
="
preserve
">vt
<
lb
/>
applicatum per N ad applicatum
<
lb
/>
per Q, &</
s
>
<
s
xml:id
="
echoid-s7809
"
xml:space
="
preserve
">c. </
s
>
<
s
xml:id
="
echoid-s7810
"
xml:space
="
preserve
">talia ſolida, dicentur
<
lb
/>
SOLIDA ACVMINATA PROPORTIONALIA.</
s
>
<
s
xml:id
="
echoid-s7811
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div805
"
type
="
section
"
level
="
1
"
n
="
318
">
<
head
xml:id
="
echoid-head327
"
xml:space
="
preserve
">IIII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s7812
"
xml:space
="
preserve
">Si ſuper diametrum Acuminati plani deſcriptum ſit parallelogrammum
<
lb
/>
quodlibet ſuper ipſum planum quomodocunque eleuatum, idem que Acu-
<
lb
/>
minatum concipiatur ſibi ipſi æquidiſtanter moueri, ita vt eius diameter ſuo
<
lb
/>
motu parallelo prædictum parallelogrammum deſcribat: </
s
>
<
s
xml:id
="
echoid-s7813
"
xml:space
="
preserve
">ſolidum occluſum
<
lb
/>
à duobus oppoſitis Acuminatis congruentibus, ac parallelis, atque à ſuper-
<
lb
/>
ficie, quæ à perimetro figuræ motæ deſcribitur CYLINDRICVS vocetur.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s7814
"
xml:space
="
preserve
">Acuminatum verò ſolidum procreans, dicatur BASIS, & </
s
>
<
s
xml:id
="
echoid-s7815
"
xml:space
="
preserve
">parallelogram-
<
lb
/>
mum, per quod fit æquidiſtans latio Acuminati plani Cylindricum pro-
<
lb
/>
creantis, CANON DIAMETRALIS nuncupetur.</
s
>
<
s
xml:id
="
echoid-s7816
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s7817
"
xml:space
="
preserve
">Nimirum, ſit Acuminatum planum A B C, cuius diameter B D, cui in-
<
lb
/>
ſiſtat parallelogrammum quodcumq; </
s
>
<
s
xml:id
="
echoid-s7818
"
xml:space
="
preserve
">B D E F ſuper planum figuræ A B </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>