Apollonius <Pergaeus>; Lawson, John, The two books of Apollonius Pergaeus, concerning tangencies, as they have been restored by Franciscus Vieta and Marinus Ghetaldus : with a supplement to which is now added, a second supplement, being Mons. Fermat's Treatise on spherical tangencies

Page concordance

< >
Scan Original
11 (vii)
12
13
14 (2)
15 (3)
16 (4)
17 (5)
18 (6)
19 (7)
20 (8)
21 (9)
22 (10)
23 (11)
24 (12)
25 (13)
26 (14)
27 (15)
28 (16)
29 (17)
30
31 (19)
32 (20)
33 (21)
34 (22)
35 (23)
36 (24)
37 (25)
38 (26)
39 (27)
40 (28)
< >
page |< < ((16)) of 161 > >|
    <echo version="1.0RC">
      <text xml:lang="en" type="free">
        <div xml:id="echoid-div32" type="section" level="1" n="32">
          <p>
            <s xml:id="echoid-s645" xml:space="preserve">
              <pb o="(16)" file="0028" n="28"/>
            ſtruction:) </s>
            <s xml:id="echoid-s646" xml:space="preserve">hence by ſubſtraction BK = KG + BF, and by ſubtraction again
              <lb/>
            FK = KG.</s>
            <s xml:id="echoid-s647" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s648" xml:space="preserve">
              <emph style="sc">Case</emph>
            5th. </s>
            <s xml:id="echoid-s649" xml:space="preserve">Suppoſe the given circle A to include B, and it be required that
              <lb/>
            the circles to be deſcribed be touched outwardly by A and inwardly by B.</s>
            <s xml:id="echoid-s650" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s651" xml:space="preserve">
              <emph style="sc">Then</emph>
            let AB cut the circumferences in C and D, P and O: </s>
            <s xml:id="echoid-s652" xml:space="preserve">and biſecting
              <lb/>
            CO in I, and ſetting off from I towards P, IL = the difference of the ſemidia-
              <lb/>
            meters of the given circles, and with A and B foci and IL tranſverſe axis de-
              <lb/>
            ſcribing an ellipſe LKI, it will be the locus of the centers of the circles deſcribed,
              <lb/>
            and the demonſtration, mutatis mutandis, is the ſame as in the laſt caſe.</s>
            <s xml:id="echoid-s653" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s654" xml:space="preserve">
              <emph style="sc">Cases</emph>
            6th and 7th. </s>
            <s xml:id="echoid-s655" xml:space="preserve">Suppoſe the two given circles cut each other, and it be
              <lb/>
            required that the circles to be deſcribed either be touched and included in them
              <lb/>
            both, or be touched by them both and at the ſame time include them both.</s>
            <s xml:id="echoid-s656" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s657" xml:space="preserve">
              <emph style="sc">These</emph>
            two caſes are ſimilar to caſes 1ſt and 2d, and as there, ſo alſo here,
              <lb/>
            the tranſverſe axis of the two oppoſite hyperbolas, which are the loci required,
              <lb/>
            muſt be taken = the difference of the ſemidiameters of the given circles. </s>
            <s xml:id="echoid-s658" xml:space="preserve">The
              <lb/>
            demonſtration is ſo alike, it need not be repeated.</s>
            <s xml:id="echoid-s659" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div33" type="section" level="1" n="33">
          <head xml:id="echoid-head39" xml:space="preserve">PROBLEM IV.</head>
          <p>
            <s xml:id="echoid-s660" xml:space="preserve">
              <emph style="sc">Having</emph>
            a given point A, and a given right line BC, to determine the locus
              <lb/>
            of the centers of thoſe circles which ſhall paſs through A and touch BC.</s>
            <s xml:id="echoid-s661" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s662" xml:space="preserve">
              <emph style="sc">From</emph>
            A draw AG perpendicular to BC, then with focus A and directrix BC
              <lb/>
            let a parabola be deſcribed, and it will be the locus required; </s>
            <s xml:id="echoid-s663" xml:space="preserve">for by the propert
              <lb/>
            of the curve FA always equals FG drawn perpendicular to the directrix.</s>
            <s xml:id="echoid-s664" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div34" type="section" level="1" n="34">
          <head xml:id="echoid-head40" xml:space="preserve">PROBLEM V.</head>
          <p>
            <s xml:id="echoid-s665" xml:space="preserve">
              <emph style="sc">Having</emph>
            a given point A, and a given circle whoſe center is B, to determine
              <lb/>
            the locus of the centers of all thoſe circles, which paſs through A, and at the
              <lb/>
            ſame time are touched by the given circle.</s>
            <s xml:id="echoid-s666" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s667" xml:space="preserve">
              <emph style="sc">Cases</emph>
            1ſt and 2d. </s>
            <s xml:id="echoid-s668" xml:space="preserve">Suppoſe the point A to lie out of the given circle, and
              <lb/>
            it be required that the circles to be deſcribed be either touched outwardly by the
              <lb/>
            given circle, or inwardly by it.</s>
            <s xml:id="echoid-s669" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s670" xml:space="preserve">
              <emph style="sc">Let</emph>
            AB be drawn, and let it cut the given circumference where it is convex
              <lb/>
            towards A in the point C, and where it is concave in the point O: </s>
            <s xml:id="echoid-s671" xml:space="preserve">then biſecting
              <lb/>
            AC in E, and ſetting off from E towards B, EH = BC the given radius, and
              <lb/>
            with A and B foci and EH tranſverſe Axis deſcribing two oppoſite Hyperbolas
              <lb/>
            KEK and LHL, it is evident that KEK will be the locus of the centers of thoſe
              <lb/>
            circles which paſs thrugh A and are touched outwardly by the given circle, and
              <lb/>
            LHL will be the locus of the centers of thoſe circles which paſs through A and
              <lb/>
            are touched inwardly by the given circle.</s>
            <s xml:id="echoid-s672" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>