Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

Table of figures

< >
[Figure 281]
[Figure 282]
[Figure 283]
[Figure 284]
[Figure 285]
[Figure 286]
[287] Dd 2
[Figure 288]
[Figure 289]
[Figure 290]
[Figure 291]
[Figure 292]
[Figure 293]
[Figure 294]
[Figure 295]
[Figure 296]
[Figure 297]
[Figure 298]
[Figure 299]
[Figure 300]
[Figure 301]
[Figure 302]
[Figure 303]
[Figure 304]
[Figure 305]
[Figure 306]
[Figure 307]
[Figure 308]
[Figure 309]
[Figure 310]
< >
page |< < (244) of 458 > >|
282244Apollonij Pergæi 329[Figure 329]
Igitur duo plana tranſeuntia per K L, T V eleuata ſuper triangulum.
11d H F I ad angulos rectos producunt in cono H F I duas ſectiones hypor-
bolicas, quarum axes L M, V X, &
inclinati ipſarum L K, V T, &
ſingulì eorum ad ſuos erectos ſunt, vt D B ad B E;
ergo figuræ trium.
ſectionum ſunt ſimiles, & æquales; & propterea duæ ſectiones, qua-
rum axes ſunt L M, V X ſunt æquales ſectioni A B, &
c. Ex textu men-
doſo expungi debent ſuperuacanea aliqua verba, ſicut in contextu habetur.

Non enim verum eſt, quod duæ tantummodo hyperbole æquales eidem A B duci
poſſunt in cono recto H F I, vertices habentes in lateribus H F, &
F I, ſed
quatuor inter ſe æquales eße poßunt;
nam ſuper latus F H duci poſſunt duæ
hyperbole, quarum axes tranſuerſi K L æquales ſint ipſi B D, &
æquidiſtan-
tes ſint rectis lineis F N, &
F S. Quod ſic oſtendetur. Quoniam recta linea
Q R ducta eſt parallela ipſi H I erunt duo arcus circuli intercepti H Q, I R
æquales inter ſe;
& ideo duo anguli ad peripheriam H F Q, & I F R æquales
erunt inter ſe;
poſita autem fuit K L æqualis, & parallela ipſi F N; igitur
duo anguli alterni K L F, &
H F N æquales ſunt inter ſe: pari ratione; quia
reliqua K L ducta eſt parallela ipſi F S, erit angulus externus S F I æqualis
interno, &
oppoſito, & ad eaſdem partes L K F; & ideo duo triangula L F K
habent angulum F, communem, &
duos angolos in ſingulis triangulis K, &
L æquales;
igitur ſunt æquiangula, & ſimilia, & , vt antea dictum eſt, fieri
poſſunt duæ rectæ lineæ K L æquales eidem D B, &
inter ſe: ſi igitur per duas
rectas lineas K L ducantur plana perpendicularia ad planum trianguli per axim
H F I, eſſicientur in cono recto duæ hyperbole, quarum bini axes tranſuerſi K L
ſunt æquales:
& quia, propter parallelas H I, Q R, eſt F N ad N Q ſeu qua-
dratum F N ad rectangulum F N Q vt F S æd S R ſeu vt quadratum F S ad
rectangum F S R;
ſed rectangulum H N I æquale eſt rectangulo F N Q, &
rectangulum H S I æquale eſt rectangulo F S R:
ergo quadratum F N ad re-
ctangulum H N I eandem proportionem habet, quàm quaàratum F S ad rectã-
gulum H S I;
eſtque latus tranſuerſum K L ad ſuum latus rectum, vt quadra-
2212. lib. 1. tum F N ad rectangulum H N I, pariterque latus tranſuerſum K L alterius
ſectionis ad ſuum latus rectum eſt vt quadratum F S ad rectangulum H S I:
33Ibidem.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index