Clavius, Christoph
,
Geometria practica
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
>
281
(251)
282
(252)
283
(253)
284
(254)
285
(255)
286
(256)
287
(257)
288
(258)
289
(259)
290
(260)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
>
page
|<
<
(259)
of 450
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div730
"
type
="
section
"
level
="
1
"
n
="
251
">
<
p
>
<
s
xml:id
="
echoid-s11925
"
xml:space
="
preserve
">
<
pb
o
="
259
"
file
="
289
"
n
="
289
"
rhead
="
LIBER SEXTVS.
"/>
pterea ad reliquum ml C B A, reliquo rectangulo K M. </
s
>
<
s
xml:id
="
echoid-s11926
"
xml:space
="
preserve
"> Igitur erit A B C l
<
note
symbol
="
a
"
position
="
right
"
xlink:label
="
note-289-01
"
xlink:href
="
note-289-01a
"
xml:space
="
preserve
">7. quinti.</
note
>
a d l m D, vt G M, ad K M: </
s
>
<
s
xml:id
="
echoid-s11927
"
xml:space
="
preserve
">hoc eſt vt G L, ad L K, vel vt E, ad F. </
s
>
<
s
xml:id
="
echoid-s11928
"
xml:space
="
preserve
">quod eſt pro-
<
lb
/>
poſitum.</
s
>
<
s
xml:id
="
echoid-s11929
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s11930
"
xml:space
="
preserve
">
<
emph
style
="
sc
">Eodem</
emph
>
prorſus modo quamlibet aliam figuram, quotquot habeat latera,
<
lb
/>
in datam prop ortionem ſecabimus per lineam, quæ vni lateri vel cuiuis alij re-
<
lb
/>
ctæ lineæ æquidiſtet. </
s
>
<
s
xml:id
="
echoid-s11931
"
xml:space
="
preserve
">Sit enim datum heptagonum qualecunque A B C D E F G,
<
lb
/>
ſecandum per lineam lateri A G, parallelam, in duas partes, vt ea, quæ ad D, ver-
<
lb
/>
git, ad reliquam habeat proportionem eandem, quam M, ad N habet. </
s
>
<
s
xml:id
="
echoid-s11932
"
xml:space
="
preserve
">Conſtitu-
<
lb
/>
to quadrato H I K L, æquali ipſi heptagono, per ea, quæin ſchol. </
s
>
<
s
xml:id
="
echoid-s11933
"
xml:space
="
preserve
">propoſ. </
s
>
<
s
xml:id
="
echoid-s11934
"
xml:space
="
preserve
">14.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s11935
"
xml:space
="
preserve
">lib. </
s
>
<
s
xml:id
="
echoid-s11936
"
xml:space
="
preserve
">2. </
s
>
<
s
xml:id
="
echoid-s11937
"
xml:space
="
preserve
">Euclid. </
s
>
<
s
xml:id
="
echoid-s11938
"
xml:space
="
preserve
">vel potius per ea, quæ Num. </
s
>
<
s
xml:id
="
echoid-s11939
"
xml:space
="
preserve
">4. </
s
>
<
s
xml:id
="
echoid-s11940
"
xml:space
="
preserve
">cap. </
s
>
<
s
xml:id
="
echoid-s11941
"
xml:space
="
preserve
">4. </
s
>
<
s
xml:id
="
echoid-s11942
"
xml:space
="
preserve
">lib. </
s
>
<
s
xml:id
="
echoid-s11943
"
xml:space
="
preserve
">4. </
s
>
<
s
xml:id
="
echoid-s11944
"
xml:space
="
preserve
">huius ſcripſimus; </
s
>
<
s
xml:id
="
echoid-s11945
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s11946
"
xml:space
="
preserve
">
<
lb
/>
diuiſo latere H I, in O, in proportionem M, ad N, ductaque O P, lateri H L, pa-
<
lb
/>
rellela: </
s
>
<
s
xml:id
="
echoid-s11947
"
xml:space
="
preserve
"> fiat ſuper rectam A G, inter rectas A B, G F, rectangulo I P,
<
note
symbol
="
b
"
position
="
right
"
xlink:label
="
note-289-02
"
xlink:href
="
note-289-02a
"
xml:space
="
preserve
">2. hui{us}.</
note
>
le rectilineum A G Q R, habens latus Q R, lateri A G, parallelum. </
s
>
<
s
xml:id
="
echoid-s11948
"
xml:space
="
preserve
">Et quo-
<
lb
/>
niam Q R, cadit vltra F, B, conſtituemus
<
figure
xlink:label
="
fig-289-01
"
xlink:href
="
fig-289-01a
"
number
="
192
">
<
image
file
="
289-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/xxxxxxxx/figures/289-01
"/>
</
figure
>
<
note
symbol
="
c
"
position
="
right
"
xlink:label
="
note-289-03
"
xlink:href
="
note-289-03a
"
xml:space
="
preserve
">2. hui{us}.</
note
>
ſum ſuper rectam S T, inter rectas S C, T E, per
<
lb
/>
rectam V X, ipſi S T, parallelam, recti-
<
lb
/>
lineum æquale triangulis F Q T, B R S, extra
<
lb
/>
heptagonum exiſtentibus; </
s
>
<
s
xml:id
="
echoid-s11949
"
xml:space
="
preserve
">factumque erit
<
lb
/>
quod proponitur. </
s
>
<
s
xml:id
="
echoid-s11950
"
xml:space
="
preserve
">Cum enim rectilineum
<
lb
/>
A G Q R, ac proinde & </
s
>
<
s
xml:id
="
echoid-s11951
"
xml:space
="
preserve
">rectilineum A B V X-
<
lb
/>
F G, rectangulo I P, ſit æquale, erit quo que re-
<
lb
/>
liquum D E X V C, reliquo rectangulo O L, æ-
<
lb
/>
quale. </
s
>
<
s
xml:id
="
echoid-s11952
"
xml:space
="
preserve
"> Igitur erit D E X V C, ad A B V X F
<
note
symbol
="
d
"
position
="
right
"
xlink:label
="
note-289-04
"
xlink:href
="
note-289-04a
"
xml:space
="
preserve
">7. quinti.</
note
>
vt O L, ad I P, hoc eſt, vt H O, ad O I, vel
<
note
symbol
="
e
"
position
="
right
"
xlink:label
="
note-289-05
"
xlink:href
="
note-289-05a
"
xml:space
="
preserve
">1. ſexti.</
note
>
M, ad N, quo derat faciendum.</
s
>
<
s
xml:id
="
echoid-s11953
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s11954
"
xml:space
="
preserve
">
<
emph
style
="
sc
">Qvod</
emph
>
ſi latus rectilinei ex heptagono ab-
<
lb
/>
ſciſsi æquidiſtare debeat rectæ Y, q̃ nulli lateri
<
lb
/>
heptagoni æꝗdiſter (ſinãq; </
s
>
<
s
xml:id
="
echoid-s11955
"
xml:space
="
preserve
">æquidiſtaret, vni
<
lb
/>
lateri, abſolueretur problema, vt proximè tra-
<
lb
/>
ditũ eſt) ducta ex angulo G, rectæ Y, parallela
<
lb
/>
G Z, quæ intra figurã cadat; </
s
>
<
s
xml:id
="
echoid-s11956
"
xml:space
="
preserve
"> cõſtruemus
<
note
symbol
="
f
"
position
="
right
"
xlink:label
="
note-289-06
"
xlink:href
="
note-289-06a
"
xml:space
="
preserve
">2. hui{us}.</
note
>
lineo A G Z, ſuper rectã I K, æquale rectangulũ h K; </
s
>
<
s
xml:id
="
echoid-s11957
"
xml:space
="
preserve
">quod fiet, ſi rectilineo A G Z,
<
lb
/>
fiat æquale quadratum, cuius latus l, & </
s
>
<
s
xml:id
="
echoid-s11958
"
xml:space
="
preserve
">duabus I K, & </
s
>
<
s
xml:id
="
echoid-s11959
"
xml:space
="
preserve
">l, tertia proportiona-
<
lb
/>
lis reperiatur I h. </
s
>
<
s
xml:id
="
echoid-s11960
"
xml:space
="
preserve
">Ducta enim h i, ipſi I K, parallela, erit rectangulum h K,
<
note
symbol
="
g
"
position
="
right
"
xlink:label
="
note-289-07
"
xlink:href
="
note-289-07a
"
xml:space
="
preserve
">17. ſexti.</
note
>
drato lateris l, hoc eſt, rectilineo A G Z, æquale. </
s
>
<
s
xml:id
="
echoid-s11961
"
xml:space
="
preserve
"> Deinde ſuper rectam G
<
note
symbol
="
h
"
position
="
right
"
xlink:label
="
note-289-08
"
xlink:href
="
note-289-08a
"
xml:space
="
preserve
">2. hui{us}.</
note
>
inter rectas G F, Z B, conſtituemus rectangulo h P, per parallelam b a, æqua-
<
lb
/>
le rectilineum G Z b a. </
s
>
<
s
xml:id
="
echoid-s11962
"
xml:space
="
preserve
"> Nam ſi triangulis B b e, F a d, ſuper rectam d e,
<
note
symbol
="
i
"
position
="
right
"
xlink:label
="
note-289-09
"
xlink:href
="
note-289-09a
"
xml:space
="
preserve
">2. hui{us}.</
note
>
ter rectas e C, d E, fiat per parallelam f g, rectilineum d e g f, æquale; </
s
>
<
s
xml:id
="
echoid-s11963
"
xml:space
="
preserve
">fa-
<
lb
/>
ctum erit, quod in problemate proponitur, vt ex dictis perſpicuum eſt. </
s
>
<
s
xml:id
="
echoid-s11964
"
xml:space
="
preserve
">Ea-
<
lb
/>
demque omninò ratio eſt in omnibus aliis rectilineis quamuis irregularibus,
<
lb
/>
dummodo in iis ducipoſsit vna linea parallela datærectæ, quæ rectilineum au-
<
lb
/>
ferat dato rectilineo æquale. </
s
>
<
s
xml:id
="
echoid-s11965
"
xml:space
="
preserve
">Non enim ſemper hoc fieri poſſe in figuris, cu-
<
lb
/>
ius anguli partim introrſum, & </
s
>
<
s
xml:id
="
echoid-s11966
"
xml:space
="
preserve
">partim extrorſum vergant, ad finem propoſ.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s11967
"
xml:space
="
preserve
">2. </
s
>
<
s
xml:id
="
echoid-s11968
"
xml:space
="
preserve
">huius lib. </
s
>
<
s
xml:id
="
echoid-s11969
"
xml:space
="
preserve
">declarauimus. </
s
>
<
s
xml:id
="
echoid-s11970
"
xml:space
="
preserve
">Id quod conſtructio ipſa problematis perſpicuè
<
lb
/>
nos docebit.</
s
>
<
s
xml:id
="
echoid-s11971
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>