Viviani, Vincenzo
,
De maximis et minimis, geometrica divinatio : in qvintvm Conicorvm Apollonii Pergaei
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of Notes
<
1 - 14
[out of range]
>
[Note]
Page: 85
[Note]
Page: 85
[Note]
Page: 87
[Note]
Page: 87
[Note]
Page: 88
[Note]
Page: 88
[Note]
Page: 88
[Note]
Page: 88
[Note]
Page: 88
[Note]
Page: 89
[Note]
Page: 89
[Note]
Page: 89
[Note]
Page: 90
[Note]
Page: 90
[Note]
Page: 90
[Note]
Page: 90
[Note]
Page: 90
[Note]
Page: 91
[Note]
Page: 91
[Note]
Page: 93
[Note]
Page: 94
[Note]
Page: 94
[Note]
Page: 94
[Note]
Page: 94
[Note]
Page: 94
[Note]
Page: 95
[Note]
Page: 95
[Note]
Page: 95
[Note]
Page: 95
[Note]
Page: 96
<
1 - 14
[out of range]
>
page
|<
<
(113)
of 347
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div863
"
type
="
section
"
level
="
1
"
n
="
345
">
<
p
>
<
s
xml:id
="
echoid-s8317
"
xml:space
="
preserve
">
<
pb
o
="
113
"
file
="
0299
"
n
="
299
"
rhead
="
"/>
nones E A F, C A D (qui, ex conſtructione, ſunt ad plana baſium recti)
<
lb
/>
ſunt æquales, ergo & </
s
>
<
s
xml:id
="
echoid-s8318
"
xml:space
="
preserve
">ipſæ ſolidæ portiones æquales erunt. </
s
>
<
s
xml:id
="
echoid-s8319
"
xml:space
="
preserve
">Vnde
<
note
symbol
="
a
"
position
="
right
"
xlink:label
="
note-0299-01
"
xlink:href
="
note-0299-01a
"
xml:space
="
preserve
">45. h.</
note
>
<
note
symbol
="
b
"
position
="
right
"
xlink:label
="
note-0299-02
"
xlink:href
="
note-0299-02a
"
xml:space
="
preserve
">78. h.</
note
>
nes ſolidæ portiones eiuſdem Coni recti, vel cuiuslibet prædictorum ſolido-
<
lb
/>
rum, quarum baſes contingant eiuſdem ſimilis, & </
s
>
<
s
xml:id
="
echoid-s8320
"
xml:space
="
preserve
">concentrici ſolidi ſuper-
<
lb
/>
ficiem inter ſe ſunt æquales, & </
s
>
<
s
xml:id
="
echoid-s8321
"
xml:space
="
preserve
">ad centra baſium eandem ſuperficiem con-
<
lb
/>
tingunt. </
s
>
<
s
xml:id
="
echoid-s8322
"
xml:space
="
preserve
">Quod oſtendere propoſitum fuerat; </
s
>
<
s
xml:id
="
echoid-s8323
"
xml:space
="
preserve
">quodque Cl. </
s
>
<
s
xml:id
="
echoid-s8324
"
xml:space
="
preserve
">Tor. </
s
>
<
s
xml:id
="
echoid-s8325
"
xml:space
="
preserve
">inter pro-
<
lb
/>
prios pugillares geometricos regerere non eſt dedignatus: </
s
>
<
s
xml:id
="
echoid-s8326
"
xml:space
="
preserve
">animo, vt opina-
<
lb
/>
ri libet, huiuſce haud iniucundi Theorematis, a me ipſi tantummodo expo-
<
lb
/>
ſiti demonſtrationem inquirendi, quam poſtea ſolùm de Coni portionibus
<
lb
/>
nactus fuit, vel potiùs circa ipſas tantùm placuit ei meditari: </
s
>
<
s
xml:id
="
echoid-s8327
"
xml:space
="
preserve
">eminentiſſimi
<
lb
/>
enim, ac propè diuini ingenij Vir, & </
s
>
<
s
xml:id
="
echoid-s8328
"
xml:space
="
preserve
">de aliorum ſolidorum portionibus fe-
<
lb
/>
liciùs quàm à nobis ſuperiùs factum ſit, hoc idem reperiſſet, ſi tantillùm ex-
<
lb
/>
cogitaſſet: </
s
>
<
s
xml:id
="
echoid-s8329
"
xml:space
="
preserve
">verùm proprias, ac ideò ſublimiores contem plationes affectans,
<
lb
/>
ab his nugis meis fortaſſe ſe abſtinuit.</
s
>
<
s
xml:id
="
echoid-s8330
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div865
"
type
="
section
"
level
="
1
"
n
="
346
">
<
head
xml:id
="
echoid-head355
"
xml:space
="
preserve
">SCHOLIVM.</
head
>
<
p
>
<
s
xml:id
="
echoid-s8331
"
xml:space
="
preserve
">Hlc autem animaduertendum eſt, quod nihil refert vtrùm baſes, huiuſ-
<
lb
/>
modi portionum ſolidarum inſcriptum ſolidum concentricum con-
<
lb
/>
tingant ad puncta eiuſdem ſectionis ſolidum genitricis, vel diuerſarum: </
s
>
<
s
xml:id
="
echoid-s8332
"
xml:space
="
preserve
">nam
<
lb
/>
omnes genitrices ſectiones eiuſdem ſolidi concentrici, ſe mutuò ſecant in
<
lb
/>
eodem vertice axis reuolutionis prædicti ſolidi; </
s
>
<
s
xml:id
="
echoid-s8333
"
xml:space
="
preserve
">ſed omnes portiones ſolidæ
<
lb
/>
exterioris, quæ quamlibet ſolidi interioris genitricem ſectionem per centra
<
lb
/>
earum baſium contingunt, æquales oſtendi poſſunt per ſuperiorem prop. </
s
>
<
s
xml:id
="
echoid-s8334
"
xml:space
="
preserve
">78.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s8335
"
xml:space
="
preserve
">eidem tertiæ portioni ſolidæ ab ipſo exteriori ſolido abſciſſæ, ei nempe,
<
lb
/>
cuius baſis tranſiens per axis verticem ad eundem axim ſit recta, circulum
<
lb
/>
in ſectione efficiens; </
s
>
<
s
xml:id
="
echoid-s8336
"
xml:space
="
preserve
">ergo omnes prædictæ portiones ſolidæ, vbicunque ea-
<
lb
/>
rum baſes contingant ſuperficiem ſimilis, & </
s
>
<
s
xml:id
="
echoid-s8337
"
xml:space
="
preserve
">concentrici inſcripti ſolidi, in-
<
lb
/>
ter ſe æquales erunt, cum tertiæ cuidam portioni ſint æquales, &</
s
>
<
s
xml:id
="
echoid-s8338
"
xml:space
="
preserve
">c.</
s
>
<
s
xml:id
="
echoid-s8339
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div866
"
type
="
section
"
level
="
1
"
n
="
347
">
<
head
xml:id
="
echoid-head356
"
xml:space
="
preserve
">THEOR. LII. PROP. LXXXI.</
head
>
<
p
>
<
s
xml:id
="
echoid-s8340
"
xml:space
="
preserve
">Si planum ductum per axem Coni recti, vel Conoidis Parabo-
<
lb
/>
lici, aut Hyperbolici, Sphæræ, aut Sphæroidis oblongi, vel pro-
<
lb
/>
lati à quadam recta linea ſecetur, per quam ductum ſit planum,
<
lb
/>
quod ad planum per axem rectum ſit: </
s
>
<
s
xml:id
="
echoid-s8341
"
xml:space
="
preserve
">ſolidi portio, quæ per hoc
<
lb
/>
planum abſcinditur, MINIMA eſt omnium portionum à quibuſ-
<
lb
/>
libet alijs planis per eandem rectam ductis abſciſſarum.</
s
>
<
s
xml:id
="
echoid-s8342
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s8343
"
xml:space
="
preserve
">ESto quodlibet prædictorum ſolidorum A B C, cuius axis reuolutionis
<
lb
/>
ſit B D, & </
s
>
<
s
xml:id
="
echoid-s8344
"
xml:space
="
preserve
">planum per axem ductum ſit A B C vbicunque ſectum à
<
lb
/>
quadam recta A F, ad vtranque partem ſectioni occurrente, per quam con-
<
lb
/>
cipiatur duci planum A E F ad ipſum A B C rectum, portionem ex </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>