Barrow, Isaac, Lectiones opticae & geometricae : in quibus phaenomenon opticorum genuinae rationes investigantur, ac exponuntur: et generalia curvarum linearum symptomata declarantur

Page concordance

< >
Scan Original
31 13
32 14
33 15
34 16
35 17
36 18
37 19
38 20
39 21
40 22
41 23
42 24
43 25
44 26
45 27
46 28
47 29
48 30
49 31
50 32
51 33
52 34
53 35
54 36
55 37
56 38
57 39
58 40
59 41
60 42
< >
page |< < (13) of 393 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div13" type="section" level="1" n="10">
          <p>
            <s xml:id="echoid-s520" xml:space="preserve">
              <pb o="13" file="0031" n="31" rhead=""/>
            mam illam & </s>
            <s xml:id="echoid-s521" xml:space="preserve">completam, inveſtigabimus, ac exponemus; </s>
            <s xml:id="echoid-s522" xml:space="preserve">cujuſce
              <lb/>
            quidem circa reflectionem inquiſitionis conſectaria reſultabit hæc pro-
              <lb/>
            poſitio, paſſim ab Opticis recepta:</s>
            <s xml:id="echoid-s523" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s524" xml:space="preserve">II. </s>
            <s xml:id="echoid-s525" xml:space="preserve">5. </s>
            <s xml:id="echoid-s526" xml:space="preserve">_Radius inßidens, & </s>
            <s xml:id="echoid-s527" xml:space="preserve">reflexus ad ſpeculi, velopaci reflectentis_
              <lb/>
            _ſuperficiem angulos conſtituunt aquales_. </s>
            <s xml:id="echoid-s528" xml:space="preserve">Hujus effati declarationem
              <lb/>
            ſic exequimur. </s>
            <s xml:id="echoid-s529" xml:space="preserve">Parallelogramum rectangulum ABCD lucis repræ-
              <lb/>
            ſentet radium obliquè plano ſpeculo EF incidentem. </s>
            <s xml:id="echoid-s530" xml:space="preserve">(Recta ſcilicet
              <lb/>
            EF ſit communis ſectio plani ad ſpeculum re@ i, in quo dictum Paral-
              <lb/>
            lelogrammum exiſtit, & </s>
            <s xml:id="echoid-s531" xml:space="preserve">in quo, ſecundum præmiſſa, reflectio per-
              <lb/>
            agitur, cum plano ſpeculi.) </s>
            <s xml:id="echoid-s532" xml:space="preserve">Cum itaque Parallelogrammi punctum B
              <lb/>
            ſpeculo primùm impingens opaco acimpervio, recta progredi nequeat,
              <lb/>
            conetur oportet (ut præſtruximus) retrò verſus A per ipſam rectam
              <lb/>
            BA reſilire. </s>
            <s xml:id="echoid-s533" xml:space="preserve">Cùm autem intereà rectæ BD ſupra ſpeculum eminen-
              <lb/>
            tis alter terminus D, nullo præpeditus obſtaculo pari vehementiâ cur-
              <lb/>
            ſum quoque ſuum adnitatur promovere per rectam CDH; </s>
            <s xml:id="echoid-s534" xml:space="preserve">palam
              <lb/>
            videtur utriuſque conatibus adverſis non aliter faciliùs aut propiùs ſa-
              <lb/>
            tisfieri poſſe, quàm ſi utrumque circa punctum Z rectæ BD medium
              <lb/>
            r@tationem concipiat. </s>
            <s xml:id="echoid-s535" xml:space="preserve">Sic enim utrumque pariter & </s>
            <s xml:id="echoid-s536" xml:space="preserve">quàm minimum
              <lb/>
            à recto quem affectent curſu deflectent; </s>
            <s xml:id="echoid-s537" xml:space="preserve">ſiquidem rectæ BA, DC
              <lb/>
            circulum B β D δ tangunt, centro Z per B & </s>
            <s xml:id="echoid-s538" xml:space="preserve">D deſcriptum. </s>
            <s xml:id="echoid-s539" xml:space="preserve">Cùm
              <lb/>
            autem hujuſmodi motum circularem obeundo punctum B deſcripſerit
              <lb/>
            arcum B β, & </s>
            <s xml:id="echoid-s540" xml:space="preserve">punctum D arcum D δ, hoc eſt quando recta BD ob-
              <lb/>
            tinuerit ſitum β δ, etiam ipſum punctum D ſpeculo impinget ad δ;
              <lb/>
            </s>
            <s xml:id="echoid-s541" xml:space="preserve">reditúmque proinde per arcum δ D, ſcilicet ipſius quoque jam inter-
              <lb/>
            ciſo curſu, molietur; </s>
            <s xml:id="echoid-s542" xml:space="preserve">Sed & </s>
            <s xml:id="echoid-s543" xml:space="preserve">nunc temporis ipſum punctum B ad β po-
              <lb/>
            ſitum per arcum β D tendit; </s>
            <s xml:id="echoid-s544" xml:space="preserve">quorum certè motuum adverſantium al-
              <lb/>
            ter alterius effectum impediet; </s>
            <s xml:id="echoid-s545" xml:space="preserve">itáque proximo ſaltem, quoad fieri
              <lb/>
            poterit, utrumque progreſſus arripient; </s>
            <s xml:id="echoid-s546" xml:space="preserve">proximi vero ſunt qui per
              <lb/>
            tangentes β α, δ κ; </s>
            <s xml:id="echoid-s547" xml:space="preserve">qui & </s>
            <s xml:id="echoid-s548" xml:space="preserve">ſibi nihil repugnant, at potiùs omninò ſe-
              <lb/>
            cum conſpirant; </s>
            <s xml:id="echoid-s549" xml:space="preserve">itaque punctum B per rectam β κ, punctúmque D per
              <lb/>
            rectam β κ procurrent, adeò ut totus radius ABDC jam acquirat
              <lb/>
            ſitum α β δ κ; </s>
            <s xml:id="echoid-s550" xml:space="preserve">& </s>
            <s xml:id="echoid-s551" xml:space="preserve">per hanc orbitam recta motum ſuum proſequatur. </s>
            <s xml:id="echoid-s552" xml:space="preserve">
              <lb/>
            Liquet autem angulos ABF, κ δE æquari. </s>
            <s xml:id="echoid-s553" xml:space="preserve">Nam æquantur anguli
              <lb/>
            ZB δ, Z δ B; </s>
            <s xml:id="echoid-s554" xml:space="preserve">quapropter adjunctis hinc indè rectis ZBA, β δ κ toti
              <lb/>
            ABF, κ δ E pares erunt. </s>
            <s xml:id="echoid-s555" xml:space="preserve">Unde patet è duobus quoque rectis reſiduos
              <lb/>
              <note position="right" xlink:label="note-0031-01" xlink:href="note-0031-01a" xml:space="preserve">Fig. 5.</note>
            ABE, κ δ F æquari; </s>
            <s xml:id="echoid-s556" xml:space="preserve">quod propoſitum fuit oſtendere.</s>
            <s xml:id="echoid-s557" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s558" xml:space="preserve">III. </s>
            <s xml:id="echoid-s559" xml:space="preserve">Ità de præmiſſis ſuppoſitionibus noſtris fundamentalem hanc
              <lb/>
            Caεθptricæ legem ſeu regulani elicimus, quàm veriſimiliter aut </s>
          </p>
        </div>
      </text>
    </echo>