Barrow, Isaac, Lectiones opticae & geometricae : in quibus phaenomenon opticorum genuinae rationes investigantur, ac exponuntur: et generalia curvarum linearum symptomata declarantur

Page concordance

< >
Scan Original
311 118
312 119
313 120
314 121
315 122
316 123
317 124
318 125
319 126
320 127
321 128
322 129
323 130
324 131
325 132
326 133
327 134
328 135
329 136
330 137
331 138
332 139
333 140
334 141
335 142
336 143
337 144
338 145
339 146
340 147
< >
page |< < (119) of 393 > >|
312119
Prop. 1.
Si à puncto E in _axe A m coni recti_ ABC _p_ recta infinita EC
tranſeat per _coni ſuperficiem_, &
quieſcente termino E circumferatur
11Fig. 178. recta ECdonec redeat ad locum à quo coepit moveri, ita ut femper
aliqua pars ejus ſecet _coni ſuperficiem_ (puta per H) _perbolam_ CFD &

rectas DAA Cin ſuperficie coni ſitas) _ſolidum comprebenſum à ſuper-_
_ficie vel ſuperficiebus genitis à linea_ EC ſic mota &
à _portione ſuperft-_
_ciei_ ejuſdem coni terminatæ à linea vel lineis CFD, DA, ACquas
recta ECcircumlata deſcribit in _ſuperficie conica_, erit æquale _Pyra-_
_midi_ cujus _Altitudo_ eſt æ qualis _perpendiculari_ E _n_ à puncto E ad latus
_Coni_ deductæ _b@ſis_ verò æqualis eidem _ſuperficiei conicœ terminat œ à_
linea vel lineis CFD, DA, ACgeneratis à motu lineæ EC.
_Solidum_ enim ECF, DAC conſtat ex _infinitis pyramidibus_ EC _o_ A
E _o o_ A, &
c. æquialtis perpendiculari E n, quarum baſes omnes
ſimul ſumptæ, exhauriunt _ſuperficiem conicam_ CFD, DA, AC.
Prop. 2.
Datus ſit _Conus rectus_ ABC _p_ ſecetur à plano CFD axi A _m_ pa-
22Fig. 178. rallelo ducantur rectæ AC, ADà vertice _coni_ ad _lineam byperbolicam_
CFD, &
ſuper _triangulo_ ACD erigatur _pyramis_ EACD habens
_verticem_ E in _axe coni_;
ſitque E δ plano ACD perpendicularis, &
E _n_ lateri coni.
Dico, _ſuperficies conica_ terminata à _linea byperbolica_ CFD & re-
ctis DA, ACita ſe habet ad ACD _baſem pyramidis_ EACD ut
_altitudo_ E δ _pyramidis_ EACD ad perpendiculum E _n._
Quoniam
enim Conici ACF D, ECFD habent vertices A &
E in plano baſi
CFD (quæ eſt utrique Conico communis) parallelo ergo ſunt æ-
quales.
Si ergò à ſolido quod componitur à conico ACFDaddito
pyramide ECADauferatur conicus ECFDreliquum erit ſolidum
ECFDACquale in propoſitione prima deſcribitur motu rectæ EC
æquale pyramidi EAC D.
Quoniam verò _œqualium pyramidum_ re-
ciprocæ ſunt _baſes al@itudinibus_, ut _altitudo_ E δ _pyramidis_ EACD
ad perpendiculum E _n_ ita erit _ſuperſicies conica_ terminata à _linea by-_
_perbolica_ CFD &
rectis DA, ACad Triangulum ACD. q. E. D.

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index