Viviani, Vincenzo
,
De maximis et minimis, geometrica divinatio : in qvintvm Conicorvm Apollonii Pergaei
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of handwritten notes
<
1 - 14
[out of range]
>
<
1 - 14
[out of range]
>
page
|<
<
(123)
of 347
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div919
"
type
="
section
"
level
="
1
"
n
="
368
">
<
p
>
<
s
xml:id
="
echoid-s8887
"
xml:space
="
preserve
">
<
pb
o
="
123
"
file
="
0319
"
n
="
319
"
rhead
="
"/>
minus eſt, prout in præcedenti demonſtratum fuit: </
s
>
<
s
xml:id
="
echoid-s8888
"
xml:space
="
preserve
">idemque ſequetur,
<
note
symbol
="
*
"
position
="
right
"
xlink:label
="
note-0319-01
"
xlink:href
="
note-0319-01a
"
xml:space
="
preserve
">94. h.</
note
>
dicatur Hyperbolen alibi quàm in G arcui D B occurrere. </
s
>
<
s
xml:id
="
echoid-s8889
"
xml:space
="
preserve
">Itaque inuenta
<
lb
/>
ſunt in ſemi - circulo, vel ſemi - Ellipſi vltrò citròque à _MAXIMO_ rectangu-
<
lb
/>
lo, duo rectangula inter ſe æqualia. </
s
>
<
s
xml:id
="
echoid-s8890
"
xml:space
="
preserve
">Quod faciendum erat.</
s
>
<
s
xml:id
="
echoid-s8891
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div924
"
type
="
section
"
level
="
1
"
n
="
369
">
<
head
xml:id
="
echoid-head378
"
xml:space
="
preserve
">PROBL. XIX. PROP. XCVI.</
head
>
<
p
>
<
s
xml:id
="
echoid-s8892
"
xml:space
="
preserve
">In quocunque Cono terminato, ex infinitis Parabolæ portioni-
<
lb
/>
bus, quæ à planis inter ſe æquidiſtantibus, iuxta quodlibet Coni
<
lb
/>
latus, tanquam regulam ductis, in ipſo Cono procreantur, MA-
<
lb
/>
XIMAM aſſignare.</
s
>
<
s
xml:id
="
echoid-s8893
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s8894
"
xml:space
="
preserve
">ESto Conus quicunque terminatus A B C, cuius vertex B, baſis circu-
<
lb
/>
lus A C, & </
s
>
<
s
xml:id
="
echoid-s8895
"
xml:space
="
preserve
">quodcunque triangulum per axem ductum ſit A B C.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s8896
"
xml:space
="
preserve
">Patet, ſi huinſmodi Conus, & </
s
>
<
s
xml:id
="
echoid-s8897
"
xml:space
="
preserve
">triangulum per axem alio plano ſecetur, quo-
<
lb
/>
rum communis ſectio D E æquidiſtet alterutri laterum trianguli per axem,
<
lb
/>
nempe B C, & </
s
>
<
s
xml:id
="
echoid-s8898
"
xml:space
="
preserve
">communis ſectio plani ſecantis per D E cum baſi A C, quę
<
lb
/>
ſit F G, ſit ad baſim A C trianguli per axem perpendicularis, patet inquam
<
lb
/>
ſectionem in Cono genitam G E F (quam vocò factam iuxta latus B C,
<
lb
/>
quod communi ſectioni E D æquidiſtat) ſemper eſſe quandam
<
note
symbol
="
a
"
position
="
right
"
xlink:label
="
note-0319-02
"
xlink:href
="
note-0319-02a
"
xml:space
="
preserve
">1. primi
<
lb
/>
huius.</
note
>
portionem: </
s
>
<
s
xml:id
="
echoid-s8899
"
xml:space
="
preserve
">quæritur modò, quæ ſit _MAXIMA_ harum æquidiſtantium infi-
<
lb
/>
nitarum Parabolæ portionum in Cono, iuxta latus B C, tanquam regulam,
<
lb
/>
progenitarum.</
s
>
<
s
xml:id
="
echoid-s8900
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s8901
"
xml:space
="
preserve
">Secetur diameter A C in D, ita vt A
<
lb
/>
<
figure
xlink:label
="
fig-0319-01
"
xlink:href
="
fig-0319-01a
"
number
="
255
">
<
image
file
="
0319-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/QN4GHYBF/figures/0319-01
"/>
</
figure
>
D ſit tripla ad D C, & </
s
>
<
s
xml:id
="
echoid-s8902
"
xml:space
="
preserve
">per D agatur pla-
<
lb
/>
num iuxta regulam B C, vti dictum eſt,
<
lb
/>
ſectionem faciens Parabolen G E F. </
s
>
<
s
xml:id
="
echoid-s8903
"
xml:space
="
preserve
">Di-
<
lb
/>
co hanc eſſe _MAXIMAM_ quæſitam.</
s
>
<
s
xml:id
="
echoid-s8904
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s8905
"
xml:space
="
preserve
">Secto enim Cono, quocunque alio
<
lb
/>
plano iuxta eandem regulam B C, quod
<
lb
/>
ſectionem faciat Parabolen H I K, cuius
<
lb
/>
communis ſectio cum triangulo per axem
<
lb
/>
ſit I L, cum circulo verò ſit K L H, erit
<
lb
/>
D E ipſi L I, & </
s
>
<
s
xml:id
="
echoid-s8906
"
xml:space
="
preserve
">F D ipſi K L
<
note
symbol
="
b
"
position
="
right
"
xlink:label
="
note-0319-03
"
xlink:href
="
note-0319-03a
"
xml:space
="
preserve
">16. vnd.
<
lb
/>
Elem.</
note
>
quare angulus F D E angulo K L I æqua-
<
lb
/>
lis erit, vnde, ſi concipiantur iungi
<
note
symbol
="
c
"
position
="
right
"
xlink:label
="
note-0319-04
"
xlink:href
="
note-0319-04a
"
xml:space
="
preserve
">10. ibid.</
note
>
ctæ F E, K I, triangula F D E, K L I cum
<
lb
/>
ſint æquiangula ad D, L, habebunt rationem compoſitam ex latere E D
<
lb
/>
ad I L, ſiue ex D A ad A L, & </
s
>
<
s
xml:id
="
echoid-s8907
"
xml:space
="
preserve
">ex D F ad L K, ſed rectangulum quoque
<
lb
/>
A D F, ad rectangulum A L K habet rationem ex ijſdem rationibus com-
<
lb
/>
poſitam, ergo triangulum E D F ad I L H erit vt rectangulum A D F ad A
<
lb
/>
L K, ſed rectangulum A D F maius eſt ipſo A L K, cum ſit
<
note
symbol
="
d
"
position
="
right
"
xlink:label
="
note-0319-05
"
xlink:href
="
note-0319-05a
"
xml:space
="
preserve
">93 h.</
note
>
ergo & </
s
>
<
s
xml:id
="
echoid-s8908
"
xml:space
="
preserve
">triangulum E D F ipſo I L K maius erit, & </
s
>
<
s
xml:id
="
echoid-s8909
"
xml:space
="
preserve
">ſumptis duplis
<
note
symbol
="
e
"
position
="
right
"
xlink:label
="
note-0319-06
"
xlink:href
="
note-0319-06a
"
xml:space
="
preserve
">17. pri-
<
lb
/>
mi h.</
note
>
partibus tertijs, erit Parabolæ portio G E F maior Parabolæ portione H I
<
lb
/>
K, & </
s
>
<
s
xml:id
="
echoid-s8910
"
xml:space
="
preserve
">hoc ſemper, vbicunque æquidiſtans planum ducatur extra G E </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>