Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

Page concordance

< >
Scan Original
311 273
312 274
313 275
314 276
315 277
316 278
317 279
318 280
319 281
320 282
321 283
322 284
323 285
324 286
325 287
326 288
327 289
328 290
329 291
330
331 292
332 293
333 294
334 295
335 296
336 297
337 298
338 299
339 300
340 301
< >
page |< < (282) of 458 > >|
320282Apollonij Pergæi ſecet axim in M, & I S ad axim perpendicularem, ſeu ordinatim applica-
tam, eum ſecans in S.
Et quia trianguli A C B duo latera A C, A B ſecan-
tur proportionaliter, ſcilicet bifariam in D, &
K; ergo I D parallela eſt baſi
C B:
eſtquè tangens I M parallela ipſi B A, cum ambo ad diametrum I L ſint
11Prop. 5.
lib. 2.
ordinatim applicatæ;
pariterquè I S parallela eſt B E ( cum ſint ad axim per-
pendiculares ) igitur triangula M I S, A B E ſimilia erunt;
pariterquè trian-
gula D I S, C B E erunt ſimilia:
& ideo M S ad S I erit vt A E ad E B, &
S I ad S D erit, vt B E ad E C:
quarè ex æquali ordinata M S ad S D ean-
dem proportionem habebit, quàm A E ad E C:
eſtquè quadratum I M ad qua-
dratum N D, vt M S ad S D;
ergo quadratum I M ad quadratum N D eſt,
22Prop. 4.
huius.
vt A E ad E C, &
c.
372[Figure 372]
SECTIO TERTIA
Continens Propoſit. Apollonij VIII. IX. X.
XI. XV. XIX. XVI. XVIII.
XVII. & XX.
VIII. IN hyperbola, vel ellipſi quadratum axis inclinati, ſiue
tranſuerſi ad quadratum ſummæ duarum diametrorum
coniugatarum eiuſdem ſectionis habebit eandem proportionem,
quàm productum præſectæ axis in ſuam interceptam compara-
tam ad quadratum ſummæ ſuæ interceptæ, &
potentis compa-
ratarum.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index