Barrow, Isaac, Lectiones opticae & geometricae : in quibus phaenomenon opticorum genuinae rationes investigantur, ac exponuntur: et generalia curvarum linearum symptomata declarantur

Page concordance

< >
Scan Original
41 23
42 24
43 25
44 26
45 27
46 28
47 29
48 30
49 31
50 32
51 33
52 34
53 35
54 36
55 37
56 38
57 39
58 40
59 41
60 42
61 43
62 44
63 45
64 46
65 47
66 48
67 49
68 50
69 51
70 52
< >
page |< < (128) of 393 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div521" type="section" level="1" n="67">
          <p>
            <s xml:id="echoid-s15134" xml:space="preserve">
              <pb o="128" file="0306" n="321" rhead=""/>
            _ſpiralis_, ut pro arbitrio ductâ rectâ C μ Z habeat arcus EZ ad rectam
              <lb/>
            C μ rationem aſſignatam (puta R ad S) Manifeſtum eſt lineam β YH
              <lb/>
            eſſe rectam, quoniam EZ (KO). </s>
            <s xml:id="echoid-s15135" xml:space="preserve">Cμ (OY):</s>
            <s xml:id="echoid-s15136" xml:space="preserve">: R. </s>
            <s xml:id="echoid-s15137" xml:space="preserve">S, perpetuò.
              <lb/>
            </s>
            <s xml:id="echoid-s15138" xml:space="preserve">
              <note position="left" xlink:label="note-0306-01" xlink:href="note-0306-01a" xml:space="preserve">Fig. 198.</note>
            unde evoluta BMF ſit _Parabola_; </s>
            <s xml:id="echoid-s15139" xml:space="preserve">quoniam axis partes AP, AD ſe
              <lb/>
            habent ut ſpatia KOY, KC β, hoc eſt ut quadrata ex ipſis OY, Cβ,
              <lb/>
            vel ex ipſis PM, DB.</s>
            <s xml:id="echoid-s15140" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div525" type="section" level="1" n="68">
          <head xml:id="echoid-head71" xml:space="preserve">_Corol. Theor_. I.</head>
          <p>
            <s xml:id="echoid-s15141" xml:space="preserve">Si ad figuram βCφ erigatur _cylindricus_ altitudinem habens æqua-
              <lb/>
            lem peripheriæ integræ _circuli_, cujus radius CL; </s>
            <s xml:id="echoid-s15142" xml:space="preserve">erit iſte _cylindricus_
              <lb/>
            æ
              <unsure/>
            qualis _ſolido_, quod procreatur è figurâ Cβ HK circa axem CK ro-
              <lb/>
            tatâ.</s>
            <s xml:id="echoid-s15143" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div526" type="section" level="1" n="69">
          <head xml:id="echoid-head72" xml:space="preserve">_Theor_. II.</head>
          <p>
            <s xml:id="echoid-s15144" xml:space="preserve">Sit curva quæpiam AMB (cujus axis AD, baſis DB) & </s>
            <s xml:id="echoid-s15145" xml:space="preserve">curva
              <lb/>
              <note position="left" xlink:label="note-0306-02" xlink:href="note-0306-02a" xml:space="preserve">Fig. 195.</note>
            AZL talis, ut liberè ductâ rectâ ZPM, ſit PZ = √ 2 APM; </s>
            <s xml:id="echoid-s15146" xml:space="preserve">ſit
              <lb/>
            item alia curva OYY talis, ut ad hanc productâ rectâ ZPMY,
              <lb/>
            adſumptâque rectâ R, ſit ZP q. </s>
            <s xml:id="echoid-s15147" xml:space="preserve">R q:</s>
            <s xml:id="echoid-s15148" xml:space="preserve">: PM. </s>
            <s xml:id="echoid-s15149" xml:space="preserve">PY; </s>
            <s xml:id="echoid-s15150" xml:space="preserve">ſitque denuò DL.
              <lb/>
            </s>
            <s xml:id="echoid-s15151" xml:space="preserve">R:</s>
            <s xml:id="echoid-s15152" xml:space="preserve">: R. </s>
            <s xml:id="echoid-s15153" xml:space="preserve">LE. </s>
            <s xml:id="echoid-s15154" xml:space="preserve">& </s>
            <s xml:id="echoid-s15155" xml:space="preserve">per E intra angulum LDG deſcribatur _Hyper-_
              <lb/>
              <note position="left" xlink:label="note-0306-03" xlink:href="note-0306-03a" xml:space="preserve">Fig. 199.</note>
            _bola_ EXX; </s>
            <s xml:id="echoid-s15156" xml:space="preserve">huic autem occurrat ducta recta ZHX ad AD parallela,
              <lb/>
            erit ſpatium PDOY æquale _ſpatio Hyperbolico_ LHXE.</s>
            <s xml:id="echoid-s15157" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s15158" xml:space="preserve">Hinc _ſumma_ omnium {PM/APM} = {2 LEXH/R q}.</s>
            <s xml:id="echoid-s15159" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div528" type="section" level="1" n="70">
          <head xml:id="echoid-head73" xml:space="preserve">_Theor_. III.</head>
          <p>
            <s xml:id="echoid-s15160" xml:space="preserve">Sit curva quæpiam AMB, cujus axis AD, baſis DB; </s>
            <s xml:id="echoid-s15161" xml:space="preserve">& </s>
            <s xml:id="echoid-s15162" xml:space="preserve">curva
              <lb/>
            KZL talis, ut adſumptâ quâdam R, & </s>
            <s xml:id="echoid-s15163" xml:space="preserve">arbitrariè ductâ rectâ ZPM
              <lb/>
            ad BD parallelâ, ſit √ APM. </s>
            <s xml:id="echoid-s15164" xml:space="preserve">PM:</s>
            <s xml:id="echoid-s15165" xml:space="preserve">: R. </s>
            <s xml:id="echoid-s15166" xml:space="preserve">PZ; </s>
            <s xml:id="echoid-s15167" xml:space="preserve">erit ſpatium ADLK
              <lb/>
              <note position="left" xlink:label="note-0306-04" xlink:href="note-0306-04a" xml:space="preserve">Fig. 200.</note>
            æquale _rectangulo_ ex R in 2 √ ADB; </s>
            <s xml:id="echoid-s15168" xml:space="preserve">vel {ADLK/2 R} = √ ADB.</s>
            <s xml:id="echoid-s15169" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s15170" xml:space="preserve">_Exemp_. </s>
            <s xml:id="echoid-s15171" xml:space="preserve">Sit ADB circuli quadrans, erit ſumma omnium {PM/APM} =
              <lb/>
            √ 2 DA x arc. </s>
            <s xml:id="echoid-s15172" xml:space="preserve">AB.</s>
            <s xml:id="echoid-s15173" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div530" type="section" level="1" n="71">
          <head xml:id="echoid-head74" xml:space="preserve">_Theor_. IV.</head>
          <p>
            <s xml:id="echoid-s15174" xml:space="preserve">Sit curva quæpiam AMB (cujus axis AD, baſis DB) ſintque
              <lb/>
            duæ lineæ EXK, GYL ità relatæ, ut in curva AMB ſumpto </s>
          </p>
        </div>
      </text>
    </echo>