Huygens, Christiaan
,
Christiani Hugenii opera varia; Bd. 1: Opera mechanica
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of Notes
<
1 - 5
[out of range]
>
[Note]
Page: 210
[Note]
Page: 210
[Note]
Page: 210
[Note]
Page: 211
[Note]
Page: 211
[Note]
Page: 211
[Note]
Page: 212
[Note]
Page: 212
[Note]
Page: 212
[Note]
Page: 212
[Note]
Page: 213
[Note]
Page: 213
[Note]
Page: 214
[Note]
Page: 214
[Note]
Page: 214
[Note]
Page: 214
[Note]
Page: 214
[Note]
Page: 218
[Note]
Page: 218
[Note]
Page: 218
[Note]
Page: 219
[Note]
Page: 219
[Note]
Page: 219
[Note]
Page: 219
[Note]
Page: 219
[Note]
Page: 220
[Note]
Page: 221
[Note]
Page: 222
[Note]
Page: 222
[Note]
Page: 222
<
1 - 5
[out of range]
>
page
|<
<
(220)
of 434
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div425
"
type
="
section
"
level
="
1
"
n
="
170
">
<
p
>
<
s
xml:id
="
echoid-s4816
"
xml:space
="
preserve
">
<
pb
o
="
220
"
file
="
0298
"
n
="
325
"
rhead
="
DE CENTRO OSCILL.
"/>
quæ axi viciniores ſunt, breviores & </
s
>
<
s
xml:id
="
echoid-s4817
"
xml:space
="
preserve
">frequentiores vibrationes
<
lb
/>
peragent quam remotiores, ſi arcus ſimiles deſcribant, & </
s
>
<
s
xml:id
="
echoid-s4818
"
xml:space
="
preserve
">aër non
<
lb
/>
reſiſtat.</
s
>
<
s
xml:id
="
echoid-s4819
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4820
"
xml:space
="
preserve
">Cujus rei ratio eſt, quod viciniores deſcribant arcus mi-
<
lb
/>
nores & </
s
>
<
s
xml:id
="
echoid-s4821
"
xml:space
="
preserve
">acquirant celeritates majores reſpectu arcuum quam
<
lb
/>
remotiores: </
s
>
<
s
xml:id
="
echoid-s4822
"
xml:space
="
preserve
">nam arcus ſunt proportionales quadratis, & </
s
>
<
s
xml:id
="
echoid-s4823
"
xml:space
="
preserve
">
<
lb
/>
velocitates radicibus eorum; </
s
>
<
s
xml:id
="
echoid-s4824
"
xml:space
="
preserve
">quo autem radices minores ſunt
<
lb
/>
inter ſe, eo majores ſunt reſpectu quadratorum ſuorum.</
s
>
<
s
xml:id
="
echoid-s4825
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4826
"
xml:space
="
preserve
">Cum in Pendulo omnes partes niſi ſimul, propter earum
<
lb
/>
conjunctionem, moveri nequeant, vibratio minus diſtantium
<
lb
/>
ab axe ita retardata eſt a vibratione remotiorum, & </
s
>
<
s
xml:id
="
echoid-s4827
"
xml:space
="
preserve
">vibratio
<
lb
/>
remotiorum ita accelerata eſt a vibratione aliarum, ut inter
<
lb
/>
illas detur compenſatio velocitatum proportionalis arcubus
<
lb
/>
quos deſcribunt; </
s
>
<
s
xml:id
="
echoid-s4828
"
xml:space
="
preserve
">ita ut tempus vibrationis totius Penduli
<
lb
/>
medium ſit inter tempus, quo Oſcillationem peragunt ejus
<
lb
/>
partes a ſe invicem ſolutæ, ut ſit æquale ſummæ illorum
<
lb
/>
temporum, diviſæ per numerum partium, quas ut Mathema-
<
lb
/>
tice & </
s
>
<
s
xml:id
="
echoid-s4829
"
xml:space
="
preserve
">exactiſſime procedamus conſideramus, ac ſi reductæ
<
lb
/>
eſſent in puncta.</
s
>
<
s
xml:id
="
echoid-s4830
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4831
"
xml:space
="
preserve
">Conſtat experimentis, & </
s
>
<
s
xml:id
="
echoid-s4832
"
xml:space
="
preserve
">per Philoſophiam Carteſianam
<
lb
/>
demonſtrari poteſt, omnia gravia tellurem verſus cadere in
<
lb
/>
temporibus quæ ſunt in ratione ſubduplicatâ, vel ſicuti radi-
<
lb
/>
ces, altitudinum, unde deſcendunt, ſi verticaliter deſcendant,
<
lb
/>
quod etiam & </
s
>
<
s
xml:id
="
echoid-s4833
"
xml:space
="
preserve
">ex principiis Galilæi demonſtrari poteſt, ſi cadant per
<
lb
/>
arcus ſimiles, qui incipiunt omnes in eodem plano.</
s
>
<
s
xml:id
="
echoid-s4834
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4835
"
xml:space
="
preserve
">Hæ altitudines in Pendulis, quæ deſcribunt arcus ſimiles cir-
<
lb
/>
ca axem, quocum forrmant idem planum, ſunt inter ſe ut diſtantiæ
<
lb
/>
ab axe, circa quem moventur.</
s
>
<
s
xml:id
="
echoid-s4836
"
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s4837
"
xml:space
="
preserve
">Propoſita ergo quæſtio eo redit, ut dividamus, per nume-
<
lb
/>
rum partium Penduli, ſummam radicum diſtantiarum partium
<
lb
/>
ab axe. </
s
>
<
s
xml:id
="
echoid-s4838
"
xml:space
="
preserve
">vel generaliter ſummam linearum rectarum quæ repræſentant
<
lb
/>
tempora vibrationium partium ſeparatim ſumtarum, ut habeamus lineam
<
lb
/>
rectam, quæ ſit menſura temporis, quo vibrationes ſuas per-
<
lb
/>
agit Pendulum, cujus conſequenter quadratum vel 3a. </
s
>
<
s
xml:id
="
echoid-s4839
"
xml:space
="
preserve
">propor-
<
lb
/>
tionalis erit diſtantia inter axem & </
s
>
<
s
xml:id
="
echoid-s4840
"
xml:space
="
preserve
">centrum Oſcillationis.</
s
>
<
s
xml:id
="
echoid-s4841
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s4842
"
xml:space
="
preserve
">Applicatio hujus principii tribus magnitudinibus quas ha-
<
lb
/>
bet Geometria pro objecto ſatis facilis eſt.</
s
>
<
s
xml:id
="
echoid-s4843
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>