326288Apollonij Pergæi
Notæ in Propoſit. XV.
SIue ad quadratum I P erit vt C G in E H ad quadratum E G, &
c.
11f Quoniam I L ad I P erat vt H E ad E G; ergo quadratum I L ad qua-
dratum I P erit vt quadratum H E ad quadratum E G; erat autem quadra-
tum A C ad quadratum I L, vt rectangulum C G, ſeu A H in H E ad qua-
dratum E H; igitur ex æqualitate quadratum A C ad quadratum I P ean-
dem proportionem habebit, quàm rectangulum A H E ad quadratum G E.
11f Quoniam I L ad I P erat vt H E ad E G; ergo quadratum I L ad qua-
dratum I P erit vt quadratum H E ad quadratum E G; erat autem quadra-
tum A C ad quadratum I L, vt rectangulum C G, ſeu A H in H E ad qua-
dratum E H; igitur ex æqualitate quadratum A C ad quadratum I P ean-
dem proportionem habebit, quàm rectangulum A H E ad quadratum G E.
Notæ in Propoſit. XIX.
SIue ad quadratum differentiæ L I, &
I P erit vt C G in E H ad qua-
22g dratum differentiæ H E, E G, & c. Quia I L ad I P erat vt H E ad
E G, comparando antecedentes ad terminorum differentias, ſcilicet I L ad dif-
ferentiam ipſarum I L, & I P eandem proportionem habebit, quàm E H ad
378[Figure 378] differentiam ipſarum E H, & E G, & quadratum I L ad quadratum ex dif-
ferentia ipſarum I L, & I P deſcriptum eandem proportionem habebit, quàm
quadrætum H E ad quadratum ex differentia ipſarum H E, & G E deſcriptũ:
erat autem quadratum C A ad quadratum I L, vt rectangulum A H E ad
quadratum H E; ergo ex æqualitate quadratum A C ad quadratum ex diffe-
rentia ipſarum I L, & I P eandem proportionem habebit, quàm rectangulum
A H E ad quadratum ex differentia ipſarum H E, & E G.
22g dratum differentiæ H E, E G, & c. Quia I L ad I P erat vt H E ad
E G, comparando antecedentes ad terminorum differentias, ſcilicet I L ad dif-
ferentiam ipſarum I L, & I P eandem proportionem habebit, quàm E H ad
378[Figure 378] differentiam ipſarum E H, & E G, & quadratum I L ad quadratum ex dif-
ferentia ipſarum I L, & I P deſcriptum eandem proportionem habebit, quàm
quadrætum H E ad quadratum ex differentia ipſarum H E, & G E deſcriptũ:
erat autem quadratum C A ad quadratum I L, vt rectangulum A H E ad
quadratum H E; ergo ex æqualitate quadratum A C ad quadratum ex diffe-
rentia ipſarum I L, & I P eandem proportionem habebit, quàm rectangulum
A H E ad quadratum ex differentia ipſarum H E, & E G.