Cavalieri, Buonaventura, Geometria indivisibilibvs continvorvm : noua quadam ratione promota
page |< < (307) of 569 > >|
327307LIBER IV. eorundem cubi ſunt æquales, ergo parabola, DAF, erit æqualis
parabolæ, MHFC, quod oſtendere opuserat.
COROLLARIVM.
_H_Inc patet, ſi diametri, AR, HO, vel axis, & diameter ſint æquà-
les, etiam, DF, XC, eſſe ęquales, nam oſtenſum eſt, QC, eſſe æqualem
ipſi, RF, eſt autem, XC, dupla, CQ &
, DF, dupla, FR, ideò etiam,
XC, DF, ſunt, æquales.
THEOREMA XVII. PROPOS. XVIII.
EXpoſita ſemiparabola cum dimidia baſi, & axi, vel
diametro totius, &
completo parallelogrammo ſub
dicto axi, vel diametro.
& ſemibaſi, deſcriptaque ellipſis
quarta, vel circuli circa axem vel diametrum, &
ſemi-
baſim dictam, tanquam circa ſemiaxes, vel ſemidiame-
tros coniugatas integræ ellipſis, vel circuli;
ſi deinde ſu-
matur vtcunque punctum in ſemibaſi, per quod ducatur
recta linea ad oppoſitum latus parallelogrammi paralle-
la dictæ axi, vel diametro, portio huius inter ſemibaſim,
&
curuam ellipſis, vel circuli incluſa, erit media propor-
tionalis inter incluſam oppoſitis lateribus parallelogram-
mi iam dicti, &
eadem ſemibaſi, ac curua parabolæ. Si
verò ſumatur punctum in axi, vel diametro iam dicta,
&
per ipſum ducatur ſemibaſi parallela, producta vſq; ad
latus oppoſitum parallelogrammi iam dicti, &
iungantur
extrema puncta curuæ parabolæ recta linea, huius portio
incluſa inter axim, vel diametrum dictam, &
curuam pa-
rabolæ, erit media proportionalis inter eam, quæ inclu-
ditur lateribus oppoſitis dicti parallelogrammi, &
eam,
quæ includitur lateribus trianguli ſub dicta axi, vel diame-
tro, &
dicta ſemibaſi conſtituti.
219[Figure 219]

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index