Alvarus, Thomas
,
Liber de triplici motu
,
1509
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
>
31
32
33
34
35
36
37
38
39
40
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
>
page
|<
<
of 290
>
>|
<
echo
version
="
1.0
">
<
text
xml:lang
="
la
">
<
div
xml:id
="
N10132
"
level
="
1
"
n
="
1
"
type
="
body
">
<
div
xml:id
="
N1194D
"
level
="
2
"
n
="
2
"
type
="
other
"
type-free
="
pars
">
<
div
xml:id
="
N130F7
"
level
="
3
"
n
="
4
"
type
="
chapter
"
type-free
="
capitulum
">
<
pb
chead
="
Prime partis
"
file
="
0033
"
n
="
33
"/>
<
p
xml:id
="
N13206
">
<
s
xml:id
="
N13207
"
xml:space
="
preserve
">Tertia ſuppoſitio. </
s
>
<
s
xml:id
="
N1320A
"
xml:space
="
preserve
">Oēs proportiões
<
lb
/>
ſūt eq̈les quarū denoīationes ſunt eq̈les et illa ma
<
lb
/>
ior cuiꝰ denoīatio ē maior: et illa mīor: cuiꝰ denoīa
<
lb
/>
tio mīor. </
s
>
<
s
xml:id
="
N13213
"
xml:space
="
preserve
">Illa autem denoīatio dicitur maior / que
<
lb
/>
ſumitur a maiori numero cū fractione vel ſine: vel
<
lb
/>
ab vnitate cū maiori fractione.
<
note
position
="
left
"
xlink:href
="
note-0033-01a
"
xlink:label
="
note-0033-01
"
xml:id
="
N1323F
"
xml:space
="
preserve
">Ior. ſcḋo
<
lb
/>
ele.</
note
>
</
s
>
<
s
xml:id
="
N1321F
"
xml:space
="
preserve
">Hec nõ demõſtra-
<
lb
/>
tur / q2 diffinitio eſt / et a iordauo petitur in princi-
<
lb
/>
pio ſecūdi elemētoꝝ. </
s
>
<
s
xml:id
="
N13226
"
xml:space
="
preserve
">Exemplū / vt ꝓportio que eſt
<
lb
/>
8. ad .4. eſt equalis ꝓportioni que eſt .2. ad .1. quia
<
lb
/>
vtra illarū denominatur dupla. </
s
>
<
s
xml:id
="
N1322D
"
xml:space
="
preserve
">Sexquialtera
<
lb
/>
autē maior eſt ſexquitertia: q2 denominatio eius
<
lb
/>
maior eſt: denominatur em̄ ab vnitate cū medieta
<
lb
/>
te: altera vero ab vnitate cum tertia. </
s
>
<
s
xml:id
="
N13236
"
xml:space
="
preserve
">Modo plus
<
lb
/>
eſt vnitas cū medietate quã cū tertia.</
s
>
</
p
>
<
p
xml:id
="
N13247
">
<
s
xml:id
="
N13248
"
xml:space
="
preserve
">Quarta ſuppoſitio. </
s
>
<
s
xml:id
="
N1324B
"
xml:space
="
preserve
">Omne totum ex
<
lb
/>
quantolibet minori eo cõponitur: et diſtribuat ly
<
lb
/>
quãtolibet pro generibus ſingnloꝝ. </
s
>
<
s
xml:id
="
N13252
"
xml:space
="
preserve
">Probat̄̄ hec
<
lb
/>
ſuppoſitio / q2 quãtūlibet minus aliquo maiori eo
<
lb
/>
eſt pars illius: ergo ex quãtolibet tali cõponitur.
<
lb
/>
</
s
>
<
s
xml:id
="
N1325A
"
xml:space
="
preserve
">Probatur antecedens / q2 capto vno pedali: quã-
<
lb
/>
talibet mīor quãtitas pedali eſt ꝑs eiꝰ / vt ptꝫ ex ſe.</
s
>
</
p
>
<
p
xml:id
="
N1325F
">
<
s
xml:id
="
N13260
"
xml:space
="
preserve
">Quinta ſuppoſitio. </
s
>
<
s
xml:id
="
N13263
"
xml:space
="
preserve
">Omne cõpoſitū
<
lb
/>
ex duobus equalibus adequate: eſt preciſe duplū
<
lb
/>
ad vtrū illoꝝ: et omne cõpoſitū ex tribus equali-
<
lb
/>
bus adequate eſt triplum ad quodlibet illoꝝ: et ex
<
lb
/>
quattuor quadruplū: et ex quin quintuplum .etc̈.
<
lb
/>
</
s
>
<
s
xml:id
="
N1326F
"
xml:space
="
preserve
">Patet hec ſuppoſitio ex diffinitione dupli, tripli
<
lb
/>
quadrupli, et ſic ſine termino.</
s
>
</
p
>
<
p
xml:id
="
N13274
">
<
s
xml:id
="
N13275
"
xml:space
="
preserve
">Sexta ſuppoſitio. </
s
>
<
s
xml:id
="
N13278
"
xml:space
="
preserve
">Omne cõpoſituꝫ
<
lb
/>
ex duobus inequalibus eſt maius quã duplum ad
<
lb
/>
minꝰ illoꝝ: et minus quã duplū ad maius illoꝝ: et
<
lb
/>
ſi cõponatur ex tribus inequalibus: eſt maius quã
<
lb
/>
triplū ad minimū illoꝝ: et minꝰ quã triplū ad ma-
<
lb
/>
ximū: et ſi ex quattuor eſt maius quã quadruplum
<
lb
/>
ad minimū illoꝝ: et minus quã quadruplū ad ma
<
lb
/>
ximū: et ſic conſequēter: ſi cõponatur ex quin, ex
<
lb
/>
ſex .etc̈. </
s
>
<
s
xml:id
="
N1328B
"
xml:space
="
preserve
">Probatur prima pars: q2 illud cõpoſitum
<
lb
/>
continet minus illorū duorū bis: et aliquid vltra:
<
lb
/>
ergo eſt maius quã duplū ad illud. </
s
>
<
s
xml:id
="
N13292
"
xml:space
="
preserve
">Cõſequētia eſt
<
lb
/>
nota: et antecedens ꝓbatur: q2 ſi ↄ̨tineret minꝰ bis
<
lb
/>
adequate iam illud eſſet ſua medietas: et per con-
<
lb
/>
ſequens reſiduū etiã eſſet medietas: et ſic illa duo
<
lb
/>
eſſent equalia / quod eſt contra hypotheſim. </
s
>
<
s
xml:id
="
N1329D
"
xml:space
="
preserve
">Alia
<
lb
/>
pars huius partis ſimiliter ꝓbatur / q2 ſi eſſet du-
<
lb
/>
plū ad maius illoꝝ / iã illud eſſet ſua medietas / qḋ
<
lb
/>
modo eſt īpugnatū. </
s
>
<
s
xml:id
="
N132A6
"
xml:space
="
preserve
">Secūda pars probatur / quia
<
lb
/>
illud cõpoſitū continet minimū illoꝝ triū ter et a-
<
lb
/>
liquid vltra: ergo eſt pluſquã triplū ad illud. </
s
>
<
s
xml:id
="
N132AD
"
xml:space
="
preserve
">Con
<
lb
/>
ſequētia patet et antecedens ꝓbatur / q2 ſi cõtineret
<
lb
/>
eū ter adequate iã illud eſſet vna tertia eius / vt ptꝫ
<
lb
/>
ex ſe et ꝑ cõſequēs alie due partes eſſent due tertie /
<
lb
/>
et ſic aggregatū ex eis eſſet dupluꝫ ad illud mini-
<
lb
/>
mū: ſed hoc eſt falſum: q2 alterū illoꝝ duoꝝ eſt ma
<
lb
/>
ius iſto minimo: et aliud equale vel maius / vt con-
<
lb
/>
ſtat: igitur aggregatū ex iſtis duobꝰ eſt maiꝰ quã
<
lb
/>
duplū ad illud minimū. </
s
>
<
s
xml:id
="
N132C0
"
xml:space
="
preserve
">Alia pars huius partis
<
lb
/>
ꝓbatur / q2 maximū illoꝝ triū eſt maius quã tertia /
<
lb
/>
ergo cõpoſitū ex illis eſt minꝰ quã triplū ad illud.
<
lb
/>
</
s
>
<
s
xml:id
="
N132C8
"
xml:space
="
preserve
">Cõſequentia patet et antecedens ꝓbatur / q2 ſi eſſet
<
lb
/>
adeq̈te tertia iã alie due ꝑtes eſſent due tertie: et ſic
<
lb
/>
aggregatū ex eis eſſet duplū ad illud / qḋ eſt falſuꝫ /
<
lb
/>
q2 aggregatū ex aliis duobus componitur ex vno
<
lb
/>
minori illo: et alio equali vel minori: igitur aggre
<
lb
/>
gatū ex eis nõ eſt duplū ad illud. </
s
>
<
s
xml:id
="
N132D5
"
xml:space
="
preserve
">Et ſic ꝓbabis ali
<
lb
/>
as partes. </
s
>
<
s
xml:id
="
N132DA
"
xml:space
="
preserve
">Patet igitur ſuppoſitio.</
s
>
</
p
>
<
p
xml:id
="
N132DD
">
<
s
xml:id
="
N132DE
"
xml:space
="
preserve
">Septima ſuppoſitio. </
s
>
<
s
xml:id
="
N132E1
"
xml:space
="
preserve
">Quãdo aliqua
<
lb
/>
latitudo ſiue exceſſus additur alicui maiorē ꝓpor
<
cb
chead
="
Capitulū ſequartū.
"/>
tionē acquirit quã quãdo eidē additur minor ex-
<
lb
/>
ceſſus ſiue latitudo: vt quando quaternario addi
<
lb
/>
tur quaternarius maiorē ꝓportionē acquirit quã
<
lb
/>
quando ei additur binarius: </
s
>
<
s
xml:id
="
N132EF
"
xml:space
="
preserve
">Et ex conſequenti ſe-
<
lb
/>
quitur / quãdo aliq̇d deperdit aliquã latitudinē
<
lb
/>
ſiue quantitatē maiorē ꝓportionē deperdit quaꝫ
<
lb
/>
quando deperdit minorē latitudinē. </
s
>
<
s
xml:id
="
N132F8
"
xml:space
="
preserve
">Hec ſuppoſi
<
lb
/>
tio cū ſuo correlario propter ſui euidentiã nõ pro
<
lb
/>
batur: ſed ſimpliciter petitur.</
s
>
</
p
>
<
p
xml:id
="
N132FF
">
<
s
xml:id
="
N13300
"
xml:space
="
preserve
">Octaua ſuppoſitio. </
s
>
<
s
xml:id
="
N13303
"
xml:space
="
preserve
">Quãdocū idē
<
lb
/>
exceſſus ſiue latitudo additur maiori et mīori: ma
<
lb
/>
iorē ꝓportionē acquirit minꝰ quã maius. </
s
>
<
s
xml:id
="
N1330A
"
xml:space
="
preserve
">Et cum
<
lb
/>
maius et minus deperdūt eandē latitudinē ſiue ex
<
lb
/>
ceſſum maiorē ꝓportionē deperdit minus quã ma
<
lb
/>
ius: vt ſi quaternarius et octonarius perdant bi-
<
lb
/>
nariū maiorē ꝓportionē deperdit quaternarius
<
lb
/>
quã octonarius. </
s
>
<
s
xml:id
="
N13317
"
xml:space
="
preserve
">Quaternarius em̄ perdit ꝓpor-
<
lb
/>
tionē duplã: octonarius vero ſexquitertiã: vt con-
<
lb
/>
ſtat. </
s
>
<
s
xml:id
="
N1331E
"
xml:space
="
preserve
">Et ſi binarius et ſenarius binariū acquirant
<
lb
/>
binariꝰ eadē ratione maiorē ꝓportionē acquirit
<
lb
/>
quam ſenarius: vt cõſtat. </
s
>
<
s
xml:id
="
N13325
"
xml:space
="
preserve
">Probatur / ſint a.b. due
<
lb
/>
quantitates ſine numeri ſiue que vis alie latitudi-
<
lb
/>
nes a. maior et b. minor que ſe habeant in ꝓporti-
<
lb
/>
one f. et acquirat tam a. quã b.d. exceſſum ſiue lati-
<
lb
/>
tudinē: tunc dico / b. maiorē ꝓportionē acquirit
<
lb
/>
quã a. </
s
>
<
s
xml:id
="
N13332
"
xml:space
="
preserve
">Quod ſic ꝓbatur: et volo / quãdo a. acqui-
<
lb
/>
rit d. antea quã b. acquirat ipſum d. acquirat vnã
<
lb
/>
quantitatē ad quã d. ſe habet in ꝓportione f. et ſit
<
lb
/>
illa quantitas e. / et arguitur ſic / a. et b. ſe habent in
<
lb
/>
ꝓportione f. et quantitas acquiſita ipſi a ſe habet
<
lb
/>
etiã in eadē ꝓportione ad quantitatē acquiſitam
<
lb
/>
ipſi b. / ergo continuo a. et b. manent in eadē ꝓpor-
<
lb
/>
tione f. in qua ſe habebant ante talē acquiſitionē.
<
lb
/>
</
s
>
<
s
xml:id
="
N13344
"
xml:space
="
preserve
">Patet hec cõſequentia ex quīto correlario quīte
<
lb
/>
concluſionis ſecūdi capitis huiꝰ: et per cõſequens
<
lb
/>
tantã ꝓportionē acquiſiuit b. ſupra ſe quantam a
<
lb
/>
ſupra ſe. </
s
>
<
s
xml:id
="
N1334D
"
xml:space
="
preserve
">Si em̄ b. acquiſiuiſſet minorē iã ꝓportio
<
lb
/>
inter a. et b. fuiſſet augmentata: et ſi maiorem iam
<
lb
/>
fuiſſet diminuta: qm̄ quantã ꝓportionē acquirit
<
lb
/>
numerus minor vltra numeꝝ maiorē tantã deꝑdit
<
lb
/>
ꝓportio inter illos numeros: et quantã numerus
<
lb
/>
maior acquirit vltra minorē tãtã acq̇rit ꝓportio
<
lb
/>
inṫ illos nūeros ſiue q̄uis alia latitudo: vt ↄ̨ſtat ex
<
lb
/>
ſuꝑioribꝰ et ex ↄ̨ñti quantã ꝓportionē acq̇ſiuit b. ꝑ
<
lb
/>
acquiſitionē e. latitudinis tantã adequate acqui-
<
lb
/>
ſiuit a. per additionē d. latitudinis et eocõtra. </
s
>
<
s
xml:id
="
N13362
"
xml:space
="
preserve
">igit̄̄
<
lb
/>
quando b. acquirit d. maiorē latitudinē quã ſit e.
<
lb
/>
maiorē ꝓportionē acquirit: et per cõſequens ma-
<
lb
/>
iorē ꝓportionē acquirit b: acquirendo d. quam a.
<
lb
/>
acquirendo d. / quod fuit probandū. </
s
>
<
s
xml:id
="
N1336D
"
xml:space
="
preserve
">Patet tamen
<
lb
/>
conſequentia ex ſeptima ſuppoſitione huiꝰ capi-
<
lb
/>
tis. </
s
>
<
s
xml:id
="
N13374
"
xml:space
="
preserve
">Et ſic patet prima pars: et ſecunda facile ꝓba-
<
lb
/>
tur / qm̄ ſi quando a. et b. acquirūt d. latitudinē ma
<
lb
/>
iorē ꝓportionē acquirit b. quã a. / ſequitur / cū de
<
lb
/>
perdunt eandē d. latitudinē maiorē ꝓportionem
<
lb
/>
deperdit b. quã a. </
s
>
<
s
xml:id
="
N1337F
"
xml:space
="
preserve
">Nam adequate perdit illã quã
<
lb
/>
acquiſiuit et maiorē acquiſiuit: ergo maiorem de-
<
lb
/>
perdit. </
s
>
<
s
xml:id
="
N13386
"
xml:space
="
preserve
">Et ſic patet ſuppoſitio.</
s
>
</
p
>
<
p
xml:id
="
N13389
">
<
s
xml:id
="
N1338A
"
xml:space
="
preserve
">His iactis fundamentis ſit prima cõ
<
lb
/>
cluſio. </
s
>
<
s
xml:id
="
N1338F
"
xml:space
="
preserve
">Oīs ꝓportio multiplex, multiplex ſuꝑpar-
<
lb
/>
ticularis, vel multiplex ſuprapartiens eſt maior
<
lb
/>
ꝓportione ſuperparticulari vel ſuprapartiente.
<
lb
/>
</
s
>
<
s
xml:id
="
N13397
"
xml:space
="
preserve
">Probatur: q2 cuiuſlibet ꝓportionis multiplicis,
<
lb
/>
multiplicis ſuꝑparticularis, vel multiplicis ſu-
<
lb
/>
prapartiens, denominatio eſt maior quã alicu-
<
lb
/>
ius ſuperparticularis vel ſuprapartientis: igitur
<
lb
/>
quelibet ꝓportio multiplex, aut multiplex ſuper-
<
lb
/>
particularis, aut multiplex ſuprapartiēs, eſt ma </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>