Alvarus, Thomas
,
Liber de triplici motu
,
1509
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Figures
Content
Thumbnails
Table of Notes
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 141
>
[Note]
Page: 30
[Note]
Page: 30
[Note]
Page: 31
[Note]
Page: 31
[Note]
Page: 31
[Note]
Page: 31
[Note]
Page: 31
[Note]
Page: 31
[Note]
Page: 31
[Note]
Page: 31
[Note]
Page: 31
[Note]
Page: 32
[Note]
Page: 32
[Note]
Page: 32
[Note]
Page: 32
[Note]
Page: 32
[Note]
Page: 32
[Note]
Page: 32
[Note]
Page: 33
[Note]
Page: 34
[Note]
Page: 34
[Note]
Page: 34
[Note]
Page: 34
[Note]
Page: 34
[Note]
Page: 35
[Note]
Page: 35
[Note]
Page: 35
[Note]
Page: 35
[Note]
Page: 36
[Note]
Page: 36
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 141
>
page
|<
<
of 290
>
>|
<
echo
version
="
1.0
">
<
text
xml:lang
="
la
">
<
div
xml:id
="
N10132
"
level
="
1
"
n
="
1
"
type
="
body
">
<
div
xml:id
="
N1194D
"
level
="
2
"
n
="
2
"
type
="
other
"
type-free
="
pars
">
<
div
xml:id
="
N130F7
"
level
="
3
"
n
="
4
"
type
="
chapter
"
type-free
="
capitulum
">
<
p
xml:id
="
N13389
">
<
s
xml:id
="
N13397
"
xml:space
="
preserve
">
<
pb
chead
="
Secunde partis
"
file
="
0034
"
n
="
34
"/>
ior ꝓportione ſuꝑparticulari aut ſuprapartiente
<
lb
/>
</
s
>
<
s
xml:id
="
N133AA
"
xml:space
="
preserve
">Conſequētia eſt nota ex tertia ſuppoſitione et an-
<
lb
/>
tecedēs ꝓbatur: q2 denominationes illaꝝ ꝓpor-
<
lb
/>
tionum multiplicis, multiplicis ſuꝑparticularis,
<
lb
/>
et multiplicis ſuprapartientis, ſumūtur a nūero
<
lb
/>
vel numero cum fractione: denominationis vero
<
lb
/>
ſuꝑparticularis, aut ſuprapartientis, ſumuntur
<
lb
/>
ab vnitate cū fractione: vt patet ex correlariis ſe-
<
lb
/>
cunde ſuppoſitionis huiꝰ capitis: igitur denomi-
<
lb
/>
nationes illaꝝ puta multiplicis: multiplicis .etc̈.
<
lb
/>
ſunt maiores quã ſuꝑparticularis aut ſuprapar-
<
lb
/>
tientis. </
s
>
<
s
xml:id
="
N133C1
"
xml:space
="
preserve
">Et ſic patet cõcluſio.
<
note
position
="
left
"
xlink:href
="
note-0034-01a
"
xlink:label
="
note-0034-01
"
xml:id
="
N13419
"
xml:space
="
preserve
">1. correla
<
lb
/>
rium.</
note
>
</
s
>
<
s
xml:id
="
N133C9
"
xml:space
="
preserve
">¶ Ex qua ſequitur pri
<
lb
/>
mo: ꝓportiones multiplices ſuꝑparticulares: et
<
lb
/>
multiplices ſuprapartientes ſunt maiores ꝓpor-
<
lb
/>
tionibꝰ multiplicibꝰ: ita quelibet multiplex
<
lb
/>
ſuꝑparticĺaris, aut ſuprapartiēs, qualibet mul-
<
lb
/>
tiplici ab eodē numero denominata eſt maior: vt
<
lb
/>
dupla ſexquialtera eſt maior dupla: tripla ſexqui
<
lb
/>
quarta maior tripla: tripla em̄ et tripla ſexquiq̈r
<
lb
/>
ta ab eodē numero denominantur: ſed nõ adequa
<
lb
/>
te. </
s
>
<
s
xml:id
="
N133DE
"
xml:space
="
preserve
">Patet hoc correlariū eo modo quo concluſio.
<
lb
/>
<
note
position
="
left
"
xlink:href
="
note-0034-02a
"
xlink:label
="
note-0034-02
"
xml:id
="
N13421
"
xml:space
="
preserve
">2. correĺ.</
note
>
</
s
>
<
s
xml:id
="
N133E8
"
xml:space
="
preserve
">¶ Sequitur ſecūdo: ex dictis faciliter eſt inueni
<
lb
/>
re modū cognoſcendi ꝓpoſitis ꝓportiõe ſuꝑpar-
<
lb
/>
ticulari et ſuprapartiēte: que illaꝝ ſit maior. </
s
>
<
s
xml:id
="
N133EF
"
xml:space
="
preserve
">Pro
<
lb
/>
batur: et ꝓponantur due ꝓportiones a. ſuꝑparti-
<
lb
/>
cularis et b. ſuprapartiēs: et cū quelibet ſuprapar
<
lb
/>
tiens denominetur ab vnitate cū fratione partiū
<
lb
/>
aliquotaꝝ nõ facientiū vnã: et quelibet ſuꝑparti-
<
lb
/>
cularis ab vnitate cū fractiõe partis aliquote: vt
<
lb
/>
dictū eſt: et omne aggregatū ex partibus aliquotꝪ
<
lb
/>
alicuiꝰ nõ facientibus vnã eſt qualibet parte ali-
<
lb
/>
quota eiuſdē maius vel minꝰ: vel igitur illud ag-
<
lb
/>
gregatū partiū aliquotaꝝ a quo denoīatur ꝓpor
<
lb
/>
tio b. ſuprapartiens eſt maius parte aliquota a
<
lb
/>
qua denomīatur ꝓportio a. ſuꝑparticularis: aut
<
lb
/>
minus: ſi maius tūc ꝓportio ſuprapartiēs eſt ma-
<
lb
/>
ior data ꝓportione ſuꝑparticulari a. </
s
>
<
s
xml:id
="
N1340C
"
xml:space
="
preserve
">Sin minus
<
lb
/>
tunc ꝓportio ſuꝑparticularis eſt maior data ꝓ-
<
lb
/>
portiõe b. ſuprapartiente: qm̄ denomīatur ab vni
<
lb
/>
tate cū maiori fractione.</
s
>
</
p
>
<
p
xml:id
="
N13427
">
<
s
xml:id
="
N13428
"
xml:space
="
preserve
">Secunda concluſio. </
s
>
<
s
xml:id
="
N1342B
"
xml:space
="
preserve
">Oīs proportio
<
lb
/>
extremi ad extremū cõponitur ex qualibet minori
<
lb
/>
ꝓportiõe illa: vt ꝓportio dupla cõponitur ex qua
<
lb
/>
libet ꝓportione ſuprapartiente: et qualibet ſuper
<
lb
/>
particulari. </
s
>
<
s
xml:id
="
N13436
"
xml:space
="
preserve
">Et diſtribuat ly qualibet pro generi-
<
lb
/>
bus ſinguloꝝ. </
s
>
<
s
xml:id
="
N1343B
"
xml:space
="
preserve
">Probatur hec cõcluſio oſtenſiue ex
<
lb
/>
quarta ſuppoſitione: qm̄ ſi omne cõpoſitū ex quã
<
lb
/>
tolibet minori eo cõponitur: et oīs ꝓportio eſt cõ-
<
lb
/>
poſita ex aliquibus ꝓportionibus / vt ſupponitur
<
lb
/>
cõſequens eſt / oīs ꝓportio ex qualibet mīori ea
<
lb
/>
cõponatur / quod fuit ꝓbandū.
<
note
position
="
left
"
xlink:href
="
note-0034-03a
"
xlink:label
="
note-0034-03
"
xml:id
="
N134D2
"
xml:space
="
preserve
">1: correĺ.</
note
>
</
s
>
<
s
xml:id
="
N1344D
"
xml:space
="
preserve
">¶ Ex hac cõcluſiõe
<
lb
/>
ſequitur primo: quelibet ꝓportio cõponitur ex
<
lb
/>
qualibet ꝓportione medioꝝ ad īuicē: et mediorum
<
lb
/>
ad extrema. </
s
>
<
s
xml:id
="
N13456
"
xml:space
="
preserve
">vt ꝓportio dupla que eſt inter .8. et .4.
<
lb
/>
cõponitur ex ꝓportione .7. ad .6. et .6. ad .5. que ſūt
<
lb
/>
ꝓportiones medioꝝ: et ex ꝓportione .8. ad .7. et .5.
<
lb
/>
ad .4. que ſunt extremi ad mediū et medii ad extre
<
lb
/>
mū. </
s
>
<
s
xml:id
="
N13461
"
xml:space
="
preserve
">Probatur correlariū: q2 quelibet talis pro-
<
lb
/>
portio eſt pars illius ꝓportiõis extremi ad extre-
<
lb
/>
mū cū cõponat eã: et eſt minor illa vt patet ex ṗma
<
lb
/>
cõcluſione: igitur cõponitur ex qualibet ꝓportiõe
<
lb
/>
medioꝝ: et medioꝝ ad extrema.
<
note
position
="
left
"
xlink:href
="
note-0034-04a
"
xlink:label
="
note-0034-04
"
xml:id
="
N134D8
"
xml:space
="
preserve
">2. correĺ.</
note
>
</
s
>
<
s
xml:id
="
N13471
"
xml:space
="
preserve
">¶ Sequitur ſecūdo /
<
lb
/>
oīs ꝓportio ex infinitis ꝓportionibus cõponit̄̄
<
lb
/>
</
s
>
<
s
xml:id
="
N13477
"
xml:space
="
preserve
">Probatur / qm̄ ex qualibet minore ea cõponitur:
<
lb
/>
vt ptꝫ ex cõcluſione: ſed qualibet data infinite ſunt
<
lb
/>
minores: ergo quelibet ex infinitis cõponit̄̄. </
s
>
<
s
xml:id
="
N1347E
"
xml:space
="
preserve
">Pro-
<
lb
/>
batur minor / q2 ymaginor quãlibet proportionē
<
lb
/>
inequalitatis eſſe latitudinē in infinitū diuiſibilē
<
lb
/>
q2 alias nõ poſſet augeri nec ad nõ gradū ꝓpor-
<
cb
chead
="
Capitulum quartū.
"/>
tionis inequalitatis ſucceſſiue diminui.
<
note
position
="
right
"
xlink:href
="
note-0034-05a
"
xlink:label
="
note-0034-05
"
xml:id
="
N134DE
"
xml:space
="
preserve
">3. correĺ.</
note
>
</
s
>
<
s
xml:id
="
N1348F
"
xml:space
="
preserve
">¶ Sequit̄̄
<
lb
/>
tertio: oīs ꝓportio poteſt in infinitas ꝓportio-
<
lb
/>
nes diuidi: que ꝓportiones ſe habebūt vt partes
<
lb
/>
ꝓportionales illiꝰ: et hoc qua volueris ꝓportiõe.
<
lb
/>
</
s
>
<
s
xml:id
="
N13499
"
xml:space
="
preserve
">Patet: q2 cū quelibet ꝓportio ſit latitudo quedã:
<
lb
/>
ipſa habet medietatē, tertiã, quartã, ſextam, et ſic
<
lb
/>
deinceps: et ꝑ cõſequens quauis ꝓportione diuiſi
<
lb
/>
bilis eſt in infinitas ꝓportiones que ſunt partes
<
lb
/>
ꝓportionales eius. </
s
>
<
s
xml:id
="
N134A4
"
xml:space
="
preserve
">¶ Sequit̄̄ quarto: ſi aliqua
<
lb
/>
ꝓportio maioris inequalitatis diminuatur vſ
<
lb
/>
ad ꝓportionē equalitatis neceſſe eſt ipſam conti-
<
lb
/>
nuo ſucceſſiue tranſire per īfinitas ꝓportiones mi
<
lb
/>
nores ea: vt ſi ꝓportio .8. ad .4. deueniat ad ꝓpor
<
lb
/>
tioneꝫ equalitatis per diminutionem ipſorum .8.
<
lb
/>
vſ ad .4. neceſſe eſt eã tranſire per oēs ꝓportiões
<
lb
/>
ex quibus cõponitur talis ꝓportio .8. ad .4. et ille
<
lb
/>
ſunt infinte vt dicit ſecundū correlariū: igit̄̄. </
s
>
<
s
xml:id
="
N134B7
"
xml:space
="
preserve
">Ma
<
lb
/>
ior patet / q2 cū cõtinuo aliquid diminuitur vſ ad
<
lb
/>
certã quantitatē per infinitas minores quantita
<
lb
/>
tes tranſit: vt notū eſt. </
s
>
<
s
xml:id
="
N134C0
"
xml:space
="
preserve
">Et ſic ſimiliter eſt de quali-
<
lb
/>
bet latitudine que continuo ſucceſſiue diminuitur
<
lb
/>
ſed ꝓportio .8. ad .4. eſt latitudo que continuo ſuc
<
lb
/>
ceſſiue diminuitur (vt pono) igitur. </
s
>
<
s
xml:id
="
N134C9
"
xml:space
="
preserve
">et ſic patet cor-
<
lb
/>
relariū: qm̄ eo modo ꝓbabis de quauis alia.</
s
>
</
p
>
<
p
xml:id
="
N134E4
">
<
s
xml:id
="
N134E5
"
xml:space
="
preserve
">Tertia concluſio. </
s
>
<
s
xml:id
="
N134E8
"
xml:space
="
preserve
">Quãlibet propor-
<
lb
/>
tionē in duas equales ꝓportiões ſecare: vt capta
<
lb
/>
ꝓportione que eſt .8. ad .4. ipſa in duas inequales
<
lb
/>
diuidetur inuento numero ſine termino equaliter
<
lb
/>
diſtante ab vtro extremoꝝ: puta īuento numero
<
lb
/>
ſenario .8. em̄ ad .6. eſt ꝓportio ſexquitertia: et .6.
<
lb
/>
ad .4. proportio ſexquialtera: et hec maior eſt illa.
<
lb
/>
</
s
>
<
s
xml:id
="
N134F8
"
xml:space
="
preserve
">Probatur hec concluſio: q2 aut talis ꝓportio da
<
lb
/>
tur inter duas quantitates cõtinuas: aut inter du
<
lb
/>
os numeros: ſi inter duas quantitates cõtinuas:
<
lb
/>
ille erunt inequales: qm̄ de ꝓportione maioris in
<
lb
/>
equalitatis loquimur: capiatur igitur quantitas
<
lb
/>
media inter illas que equaliter diſtat ab vtra il
<
lb
/>
larū: et tunc manifeſtū eſt / maioris illaꝝ quanti-
<
lb
/>
tatū ad quãtitatē mediã eſt vna ꝓportio: et medie
<
lb
/>
quantitatis ad minimã illaꝝ eſt vna alia ꝓportio
<
lb
/>
et illa ꝓportio que eſt inter illas quantitates di-
<
lb
/>
uiditur in illas duas ꝓportiones ītermedias, q2
<
lb
/>
ex illis cõponitur / vt patet ex primo correlario ſe-
<
lb
/>
cunde concluſionis: et prima illaꝝ que videlicet eſt
<
lb
/>
maioris quantitatis ad mediã minor eſt illa que
<
lb
/>
eſt medie ad alterū extremū minꝰ: igitur talis ꝓ-
<
lb
/>
portio diuiditur in duas proportiões inequales /
<
lb
/>
quod fuit ꝓbandū. </
s
>
<
s
xml:id
="
N1351B
"
xml:space
="
preserve
">Minor ꝓbatur: q2 illa quãti-
<
lb
/>
tas media ꝑ tantū excedit minus extremū: ꝑ quan
<
lb
/>
tū adequate maius extremū excedit illã: igit̄̄ ma-
<
lb
/>
ior eſt ꝓportio illius quantitatis medie ad minus
<
lb
/>
extremū: quã alteriꝰ extremi puta maioris ad me
<
lb
/>
diã. </
s
>
<
s
xml:id
="
N13528
"
xml:space
="
preserve
">Patet hec cõſequentia ex octaua ſuppoſitiõe
<
lb
/>
huiꝰ capitis. </
s
>
<
s
xml:id
="
N1352D
"
xml:space
="
preserve
">Sin autē talis ꝓportio eſt inter nu-
<
lb
/>
meros puta inter a. et c. quoꝝ a. eſt maior et c. mīor /
<
lb
/>
vel igit̄̄ illi nūeri ſunt pares: vĺ nõ pares ſi pares
<
lb
/>
manifeſtū eſt / aggregatū ex eis eſt nūerus par:
<
lb
/>
et ꝑ cõſequens hꝫ medietatē: et illa medietas eſt me
<
lb
/>
diū inter illos duos numeros a.c. / vt patet ex ṗmo
<
lb
/>
correlario prime cõcluſionis ſecūdi capitis huiꝰ:
<
lb
/>
ſit igitur illud mediū b. / et ſequit̄̄ / a. ad b. eſt vna
<
lb
/>
ꝓportio: et b. ad c. eſt vna altera: et ex illis cõponit̄̄
<
lb
/>
ꝓportio a. ad b. / vt ptꝫ ex primo correlario ſecūde
<
lb
/>
cõcluſionis huiꝰ: et prima illaꝝ que videlicet eſt a.
<
lb
/>
ad b. eſt minor quã illa que eſt b. ad .c. / quod ptꝫ vt
<
lb
/>
ſupra: igitur ꝓportio a. ad c. in duas ꝓportiones
<
lb
/>
inequales ſecatur. </
s
>
<
s
xml:id
="
N1354A
"
xml:space
="
preserve
">Sin nõ pares creſcat vter il-
<
lb
/>
loꝝ duoꝝ numeroꝝ ad ſuū duplū: et ſequitur / eq̈
<
lb
/>
lem ꝓportionē acquirit maior illoꝝ et minor puta </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>