Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

Page concordance

< >
Scan Original
281 243
282 244
283 245
284 246
285 247
286 248
287 249
288 250
289 251
290 252
291 253
292 254
293 255
294 256
295 257
296 258
297 259
298 260
299 261
300 262
301 263
302 264
303 265
304 266
305 267
306 268
307 269
308 270
309 271
310 272
< >
page |< < (311) of 458 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div945" type="section" level="1" n="297">
          <p style="it">
            <s xml:id="echoid-s11121" xml:space="preserve">
              <pb o="311" file="0349" n="350" rhead="Conicor. Lib. VII."/>
            I L ad L O, ſeu quàm A m ad m R; </s>
            <s xml:id="echoid-s11122" xml:space="preserve">& </s>
            <s xml:id="echoid-s11123" xml:space="preserve">A C ad eandem A R minorem pro-
              <lb/>
            portionem habet quàm A m; </s>
            <s xml:id="echoid-s11124" xml:space="preserve">ideoque A C minor erit, quàm A m, & </s>
            <s xml:id="echoid-s11125" xml:space="preserve">A m
              <lb/>
              <note position="right" xlink:label="note-0349-01" xlink:href="note-0349-01a" xml:space="preserve">Lem. 2.
                <lb/>
              Lib. 5.</note>
            minor quàm m R, ſicuti I L minor eſt, quàm L O ; </s>
            <s xml:id="echoid-s11126" xml:space="preserve">& </s>
            <s xml:id="echoid-s11127" xml:space="preserve">propterea ſecta A R
              <lb/>
            bifariam in n in vtroq; </s>
            <s xml:id="echoid-s11128" xml:space="preserve">caſu C n ſemidifferentia maximè, & </s>
            <s xml:id="echoid-s11129" xml:space="preserve">minimè ſcilicet
              <lb/>
            A C, & </s>
            <s xml:id="echoid-s11130" xml:space="preserve">C R maior erit, quàm m n ſemidifferentia inæqualium intermedia-
              <lb/>
            rum A m, & </s>
            <s xml:id="echoid-s11131" xml:space="preserve">R m: </s>
            <s xml:id="echoid-s11132" xml:space="preserve">ſuntque duo quaarata ex A C, & </s>
            <s xml:id="echoid-s11133" xml:space="preserve">ex C R æqualia qua-
              <lb/>
            dratis ex R n, & </s>
            <s xml:id="echoid-s11134" xml:space="preserve">ex C n bis ſumptis, atquè quadrata ex A m, & </s>
            <s xml:id="echoid-s11135" xml:space="preserve">ex R m
              <lb/>
            æqualia ſunt quadratis ex R n, & </s>
            <s xml:id="echoid-s11136" xml:space="preserve">ex m n bis ſumptis, ſed duplum quadrati
              <lb/>
            n C cum duplo quadrati n R maiora ſunt duplo quadrati n m cum duplo qua-
              <lb/>
            drati n R (cum n R ſit communis, & </s>
            <s xml:id="echoid-s11137" xml:space="preserve">n C maior ſit n m); </s>
            <s xml:id="echoid-s11138" xml:space="preserve">igitur in vtroque
              <lb/>
            caſu duo quadrata ex maxima, & </s>
            <s xml:id="echoid-s11139" xml:space="preserve">ex minima, ſcilicet quadratum A C vna
              <lb/>
            cum quadrato C R maiora ſunt quadrato A m, & </s>
            <s xml:id="echoid-s11140" xml:space="preserve">quadrato m R ſimul ſum-
              <lb/>
            ptis: </s>
            <s xml:id="echoid-s11141" xml:space="preserve">& </s>
            <s xml:id="echoid-s11142" xml:space="preserve">quadratum A R minorem proportionem habet ad ſummam quadrato-
              <lb/>
            rum ex A C, & </s>
            <s xml:id="echoid-s11143" xml:space="preserve">ex C R, quàm ad ſummam quadrati A m, & </s>
            <s xml:id="echoid-s11144" xml:space="preserve">quadrati m
              <lb/>
            R; </s>
            <s xml:id="echoid-s11145" xml:space="preserve">ſed quadratum I O ad quadratum I L vna cum quadraio L O eandem pro-
              <lb/>
            portionem habet, quàm quadratum A R ad ſummam duorum quadratorum ex
              <lb/>
            A m, & </s>
            <s xml:id="echoid-s11146" xml:space="preserve">ex m R (propterea quod A R, & </s>
            <s xml:id="echoid-s11147" xml:space="preserve">I O diuiduntur proportionaliter in
              <lb/>
            m, & </s>
            <s xml:id="echoid-s11148" xml:space="preserve">L): </s>
            <s xml:id="echoid-s11149" xml:space="preserve">igitur quadratum A R ad ſummam quadrati A C vna cum qua-
              <lb/>
            drato C R minorem proportionem habet, quàm quadratum IO ad ſummam qua-
              <lb/>
            drati I L cum quadrato L O.</s>
            <s xml:id="echoid-s11150" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s11151" xml:space="preserve">Non ſecus oſtendetur, quod quadratum ſumme I L, & </s>
            <s xml:id="echoid-s11152" xml:space="preserve">N O ad quadrati ex
              <lb/>
            I L, & </s>
            <s xml:id="echoid-s11153" xml:space="preserve">quadrati ex N O ſummam habet minorem proportionem, quàm qua-
              <lb/>
            dratum ſumme S T, & </s>
            <s xml:id="echoid-s11154" xml:space="preserve">V X ad quadratorum ex S T, atquè ex V X ſum-
              <lb/>
              <note position="right" xlink:label="note-0349-02" xlink:href="note-0349-02a" xml:space="preserve">ex 22.
                <lb/>
              huius.</note>
            mam: </s>
            <s xml:id="echoid-s11155" xml:space="preserve">& </s>
            <s xml:id="echoid-s11156" xml:space="preserve">ideo I L cum N O minores erunt, quàm S T cum V X.</s>
            <s xml:id="echoid-s11157" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div949" type="section" level="1" n="298">
          <head xml:id="echoid-head369" xml:space="preserve">Notæ in Propoſit. XXXXIII.</head>
          <note position="left" xml:space="preserve">f</note>
          <p style="it">
            <s xml:id="echoid-s11158" xml:space="preserve">R Emanet A C in Q R minus quàm I L in N O, & </s>
            <s xml:id="echoid-s11159" xml:space="preserve">pariter I L in N
              <lb/>
              <note position="left" xlink:label="note-0349-04" xlink:href="note-0349-04a" xml:space="preserve">f</note>
            O minus quàm S T in V X, &</s>
            <s xml:id="echoid-s11160" xml:space="preserve">c. </s>
            <s xml:id="echoid-s11161" xml:space="preserve">Quia ſi ex quadrato ſummæ A C,
              <lb/>
              <figure xlink:label="fig-0349-01" xlink:href="fig-0349-01a" number="414">
                <image file="0349-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/xxxxxxxx/figures/0349-01"/>
              </figure>
            & </s>
            <s xml:id="echoid-s11162" xml:space="preserve">Q R quferantur duo quadrata ex
              <lb/>
            C A, & </s>
            <s xml:id="echoid-s11163" xml:space="preserve">ex Q R ſimul ſumpta, re-
              <lb/>
            manent duo rectangula ſub C A, & </s>
            <s xml:id="echoid-s11164" xml:space="preserve">
              <lb/>
            Q R contenta: </s>
            <s xml:id="echoid-s11165" xml:space="preserve">pariterque duplum re-
              <lb/>
            ctanguli ex I L in N O eſt rcſiduum
              <lb/>
            quadrati ex ſumma ipſarum I L, & </s>
            <s xml:id="echoid-s11166" xml:space="preserve">
              <lb/>
            N O deſcripti, poſtquàm ablata ſunt
              <lb/>
            quadratum ex I L, & </s>
            <s xml:id="echoid-s11167" xml:space="preserve">quadratum ex
              <lb/>
              <note position="right" xlink:label="note-0349-05" xlink:href="note-0349-05a" xml:space="preserve">Prop. 22.
                <lb/>
              huius.</note>
            N O ſimul; </s>
            <s xml:id="echoid-s11168" xml:space="preserve">ſed bina quadrata vtrinq;
              <lb/>
            </s>
            <s xml:id="echoid-s11169" xml:space="preserve">ablata ſunt æqualia inter ſe in ellipſi; </s>
            <s xml:id="echoid-s11170" xml:space="preserve">
              <lb/>
            & </s>
            <s xml:id="echoid-s11171" xml:space="preserve">ſumma A C, Q R minor eſt quàm
              <lb/>
              <note position="right" xlink:label="note-0349-06" xlink:href="note-0349-06a" xml:space="preserve">Prop 42.
                <lb/>
              huius.</note>
            ſumma I L, N O; </s>
            <s xml:id="echoid-s11172" xml:space="preserve">Ergo duplum re-
              <lb/>
            ctanguli ſub C A & </s>
            <s xml:id="echoid-s11173" xml:space="preserve">ſub Q R mi-
              <lb/>
            nus eſt duplo rectanguli I L in N O,
              <lb/>
            & </s>
            <s xml:id="echoid-s11174" xml:space="preserve">rectangulum ſub A C, & </s>
            <s xml:id="echoid-s11175" xml:space="preserve">Q R minus eſt rectangulo ſub I L, & </s>
            <s xml:id="echoid-s11176" xml:space="preserve">N O.</s>
            <s xml:id="echoid-s11177" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>