Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

Page concordance

< >
Scan Original
341 302
342 303
343 304
344 305
345 306
346 307
347 308
348 309
349 310
350 311
351 312
352 313
353 314
354 315
355 316
356 317
357 318
358 319
359 320
360 321
361 322
362 323
363 324
364 325
365 326
366 327
367 328
368 329
369 330
370 331
< >
page |< < (311) of 458 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div945" type="section" level="1" n="297">
          <p style="it">
            <s xml:id="echoid-s11121" xml:space="preserve">
              <pb o="311" file="0349" n="350" rhead="Conicor. Lib. VII."/>
            I L ad L O, ſeu quàm A m ad m R; </s>
            <s xml:id="echoid-s11122" xml:space="preserve">& </s>
            <s xml:id="echoid-s11123" xml:space="preserve">A C ad eandem A R minorem pro-
              <lb/>
            portionem habet quàm A m; </s>
            <s xml:id="echoid-s11124" xml:space="preserve">ideoque A C minor erit, quàm A m, & </s>
            <s xml:id="echoid-s11125" xml:space="preserve">A m
              <lb/>
              <note position="right" xlink:label="note-0349-01" xlink:href="note-0349-01a" xml:space="preserve">Lem. 2.
                <lb/>
              Lib. 5.</note>
            minor quàm m R, ſicuti I L minor eſt, quàm L O ; </s>
            <s xml:id="echoid-s11126" xml:space="preserve">& </s>
            <s xml:id="echoid-s11127" xml:space="preserve">propterea ſecta A R
              <lb/>
            bifariam in n in vtroq; </s>
            <s xml:id="echoid-s11128" xml:space="preserve">caſu C n ſemidifferentia maximè, & </s>
            <s xml:id="echoid-s11129" xml:space="preserve">minimè ſcilicet
              <lb/>
            A C, & </s>
            <s xml:id="echoid-s11130" xml:space="preserve">C R maior erit, quàm m n ſemidifferentia inæqualium intermedia-
              <lb/>
            rum A m, & </s>
            <s xml:id="echoid-s11131" xml:space="preserve">R m: </s>
            <s xml:id="echoid-s11132" xml:space="preserve">ſuntque duo quaarata ex A C, & </s>
            <s xml:id="echoid-s11133" xml:space="preserve">ex C R æqualia qua-
              <lb/>
            dratis ex R n, & </s>
            <s xml:id="echoid-s11134" xml:space="preserve">ex C n bis ſumptis, atquè quadrata ex A m, & </s>
            <s xml:id="echoid-s11135" xml:space="preserve">ex R m
              <lb/>
            æqualia ſunt quadratis ex R n, & </s>
            <s xml:id="echoid-s11136" xml:space="preserve">ex m n bis ſumptis, ſed duplum quadrati
              <lb/>
            n C cum duplo quadrati n R maiora ſunt duplo quadrati n m cum duplo qua-
              <lb/>
            drati n R (cum n R ſit communis, & </s>
            <s xml:id="echoid-s11137" xml:space="preserve">n C maior ſit n m); </s>
            <s xml:id="echoid-s11138" xml:space="preserve">igitur in vtroque
              <lb/>
            caſu duo quadrata ex maxima, & </s>
            <s xml:id="echoid-s11139" xml:space="preserve">ex minima, ſcilicet quadratum A C vna
              <lb/>
            cum quadrato C R maiora ſunt quadrato A m, & </s>
            <s xml:id="echoid-s11140" xml:space="preserve">quadrato m R ſimul ſum-
              <lb/>
            ptis: </s>
            <s xml:id="echoid-s11141" xml:space="preserve">& </s>
            <s xml:id="echoid-s11142" xml:space="preserve">quadratum A R minorem proportionem habet ad ſummam quadrato-
              <lb/>
            rum ex A C, & </s>
            <s xml:id="echoid-s11143" xml:space="preserve">ex C R, quàm ad ſummam quadrati A m, & </s>
            <s xml:id="echoid-s11144" xml:space="preserve">quadrati m
              <lb/>
            R; </s>
            <s xml:id="echoid-s11145" xml:space="preserve">ſed quadratum I O ad quadratum I L vna cum quadraio L O eandem pro-
              <lb/>
            portionem habet, quàm quadratum A R ad ſummam duorum quadratorum ex
              <lb/>
            A m, & </s>
            <s xml:id="echoid-s11146" xml:space="preserve">ex m R (propterea quod A R, & </s>
            <s xml:id="echoid-s11147" xml:space="preserve">I O diuiduntur proportionaliter in
              <lb/>
            m, & </s>
            <s xml:id="echoid-s11148" xml:space="preserve">L): </s>
            <s xml:id="echoid-s11149" xml:space="preserve">igitur quadratum A R ad ſummam quadrati A C vna cum qua-
              <lb/>
            drato C R minorem proportionem habet, quàm quadratum IO ad ſummam qua-
              <lb/>
            drati I L cum quadrato L O.</s>
            <s xml:id="echoid-s11150" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s11151" xml:space="preserve">Non ſecus oſtendetur, quod quadratum ſumme I L, & </s>
            <s xml:id="echoid-s11152" xml:space="preserve">N O ad quadrati ex
              <lb/>
            I L, & </s>
            <s xml:id="echoid-s11153" xml:space="preserve">quadrati ex N O ſummam habet minorem proportionem, quàm qua-
              <lb/>
            dratum ſumme S T, & </s>
            <s xml:id="echoid-s11154" xml:space="preserve">V X ad quadratorum ex S T, atquè ex V X ſum-
              <lb/>
              <note position="right" xlink:label="note-0349-02" xlink:href="note-0349-02a" xml:space="preserve">ex 22.
                <lb/>
              huius.</note>
            mam: </s>
            <s xml:id="echoid-s11155" xml:space="preserve">& </s>
            <s xml:id="echoid-s11156" xml:space="preserve">ideo I L cum N O minores erunt, quàm S T cum V X.</s>
            <s xml:id="echoid-s11157" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div949" type="section" level="1" n="298">
          <head xml:id="echoid-head369" xml:space="preserve">Notæ in Propoſit. XXXXIII.</head>
          <note position="left" xml:space="preserve">f</note>
          <p style="it">
            <s xml:id="echoid-s11158" xml:space="preserve">R Emanet A C in Q R minus quàm I L in N O, & </s>
            <s xml:id="echoid-s11159" xml:space="preserve">pariter I L in N
              <lb/>
              <note position="left" xlink:label="note-0349-04" xlink:href="note-0349-04a" xml:space="preserve">f</note>
            O minus quàm S T in V X, &</s>
            <s xml:id="echoid-s11160" xml:space="preserve">c. </s>
            <s xml:id="echoid-s11161" xml:space="preserve">Quia ſi ex quadrato ſummæ A C,
              <lb/>
              <figure xlink:label="fig-0349-01" xlink:href="fig-0349-01a" number="414">
                <image file="0349-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/xxxxxxxx/figures/0349-01"/>
              </figure>
            & </s>
            <s xml:id="echoid-s11162" xml:space="preserve">Q R quferantur duo quadrata ex
              <lb/>
            C A, & </s>
            <s xml:id="echoid-s11163" xml:space="preserve">ex Q R ſimul ſumpta, re-
              <lb/>
            manent duo rectangula ſub C A, & </s>
            <s xml:id="echoid-s11164" xml:space="preserve">
              <lb/>
            Q R contenta: </s>
            <s xml:id="echoid-s11165" xml:space="preserve">pariterque duplum re-
              <lb/>
            ctanguli ex I L in N O eſt rcſiduum
              <lb/>
            quadrati ex ſumma ipſarum I L, & </s>
            <s xml:id="echoid-s11166" xml:space="preserve">
              <lb/>
            N O deſcripti, poſtquàm ablata ſunt
              <lb/>
            quadratum ex I L, & </s>
            <s xml:id="echoid-s11167" xml:space="preserve">quadratum ex
              <lb/>
              <note position="right" xlink:label="note-0349-05" xlink:href="note-0349-05a" xml:space="preserve">Prop. 22.
                <lb/>
              huius.</note>
            N O ſimul; </s>
            <s xml:id="echoid-s11168" xml:space="preserve">ſed bina quadrata vtrinq;
              <lb/>
            </s>
            <s xml:id="echoid-s11169" xml:space="preserve">ablata ſunt æqualia inter ſe in ellipſi; </s>
            <s xml:id="echoid-s11170" xml:space="preserve">
              <lb/>
            & </s>
            <s xml:id="echoid-s11171" xml:space="preserve">ſumma A C, Q R minor eſt quàm
              <lb/>
              <note position="right" xlink:label="note-0349-06" xlink:href="note-0349-06a" xml:space="preserve">Prop 42.
                <lb/>
              huius.</note>
            ſumma I L, N O; </s>
            <s xml:id="echoid-s11172" xml:space="preserve">Ergo duplum re-
              <lb/>
            ctanguli ſub C A & </s>
            <s xml:id="echoid-s11173" xml:space="preserve">ſub Q R mi-
              <lb/>
            nus eſt duplo rectanguli I L in N O,
              <lb/>
            & </s>
            <s xml:id="echoid-s11174" xml:space="preserve">rectangulum ſub A C, & </s>
            <s xml:id="echoid-s11175" xml:space="preserve">Q R minus eſt rectangulo ſub I L, & </s>
            <s xml:id="echoid-s11176" xml:space="preserve">N O.</s>
            <s xml:id="echoid-s11177" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>