Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of Notes
<
1 - 8
[out of range]
>
[Note]
Page: 126
[Note]
Page: 126
[Note]
Page: 127
[Note]
Page: 127
[Note]
Page: 128
[Note]
Page: 128
[Note]
Page: 129
[Note]
Page: 130
[Note]
Page: 131
[Note]
Page: 132
[Note]
Page: 133
[Note]
Page: 133
[Note]
Page: 134
[Note]
Page: 134
[Note]
Page: 134
[Note]
Page: 134
[Note]
Page: 135
[Note]
Page: 136
[Note]
Page: 136
[Note]
Page: 136
[Note]
Page: 137
[Note]
Page: 138
[Note]
Page: 138
[Note]
Page: 138
[Note]
Page: 138
[Note]
Page: 138
[Note]
Page: 139
[Note]
Page: 139
[Note]
Page: 139
[Note]
Page: 139
<
1 - 8
[out of range]
>
page
|<
<
(332)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div799
"
type
="
section
"
level
="
1
"
n
="
473
">
<
p
>
<
s
xml:id
="
echoid-s8062
"
xml:space
="
preserve
">
<
pb
o
="
332
"
file
="
0352
"
n
="
352
"
rhead
="
GEOMETRIÆ
"/>
ctangulo ſub ſexquitertia, ME, & </
s
>
<
s
xml:id
="
echoid-s8063
"
xml:space
="
preserve
">ſub, ED, quia baſes eorum
<
lb
/>
ſunt altitudinibus reciprocę, & </
s
>
<
s
xml:id
="
echoid-s8064
"
xml:space
="
preserve
">eadem ratione rectangulum ſub ſex-
<
lb
/>
quitertia, EF, & </
s
>
<
s
xml:id
="
echoid-s8065
"
xml:space
="
preserve
">ſub, FM, æquatur rectãgulo ſub EF, & </
s
>
<
s
xml:id
="
echoid-s8066
"
xml:space
="
preserve
">ſexquitertia,
<
lb
/>
FM, ideò ſupradicta ratio erit eadem ei, quam habet rectangulũ ſub,
<
lb
/>
DE, vel, EF, & </
s
>
<
s
xml:id
="
echoid-s8067
"
xml:space
="
preserve
">ſub ſexquitertia, EM, cum {1/2}. </
s
>
<
s
xml:id
="
echoid-s8068
"
xml:space
="
preserve
">quadrati, DE, ideſt
<
lb
/>
cum rectangulo ſub, EF, & </
s
>
<
s
xml:id
="
echoid-s8069
"
xml:space
="
preserve
">{1/2}. </
s
>
<
s
xml:id
="
echoid-s8070
"
xml:space
="
preserve
">EF, ad rectangulum ſub, EF, & </
s
>
<
s
xml:id
="
echoid-s8071
"
xml:space
="
preserve
">ſub
<
lb
/>
ſexquitertia, FM, cum {5/6}. </
s
>
<
s
xml:id
="
echoid-s8072
"
xml:space
="
preserve
">quadrati, EF, ideſt cum rectangulo ſub,
<
lb
/>
EF, & </
s
>
<
s
xml:id
="
echoid-s8073
"
xml:space
="
preserve
">{5/6}. </
s
>
<
s
xml:id
="
echoid-s8074
"
xml:space
="
preserve
">EF, duo autem rectangula ſub, EF, & </
s
>
<
s
xml:id
="
echoid-s8075
"
xml:space
="
preserve
">ſub ſexquitertia,
<
lb
/>
EM, & </
s
>
<
s
xml:id
="
echoid-s8076
"
xml:space
="
preserve
">ſub, EF, & </
s
>
<
s
xml:id
="
echoid-s8077
"
xml:space
="
preserve
">{1/2}. </
s
>
<
s
xml:id
="
echoid-s8078
"
xml:space
="
preserve
">EF, conficiunt rectangulum ſub, EF, & </
s
>
<
s
xml:id
="
echoid-s8079
"
xml:space
="
preserve
">ſub
<
lb
/>
compoſita ex {1/2}. </
s
>
<
s
xml:id
="
echoid-s8080
"
xml:space
="
preserve
">EF, & </
s
>
<
s
xml:id
="
echoid-s8081
"
xml:space
="
preserve
">ſexquitertia, EM; </
s
>
<
s
xml:id
="
echoid-s8082
"
xml:space
="
preserve
">pariter alia duo rectan-
<
lb
/>
gula ſub, EF, & </
s
>
<
s
xml:id
="
echoid-s8083
"
xml:space
="
preserve
">{5/6}. </
s
>
<
s
xml:id
="
echoid-s8084
"
xml:space
="
preserve
">EF, & </
s
>
<
s
xml:id
="
echoid-s8085
"
xml:space
="
preserve
">ſub, EF, & </
s
>
<
s
xml:id
="
echoid-s8086
"
xml:space
="
preserve
">ſexquitertia, FM, conficiunt
<
lb
/>
rectangulum ſub, EF, & </
s
>
<
s
xml:id
="
echoid-s8087
"
xml:space
="
preserve
">compoſita ex {5/6}. </
s
>
<
s
xml:id
="
echoid-s8088
"
xml:space
="
preserve
">EF, & </
s
>
<
s
xml:id
="
echoid-s8089
"
xml:space
="
preserve
">ſexquitertia, FM,
<
lb
/>
ergo omnia quadrata figuræ, BDMH, demptis omnibus quadra-
<
lb
/>
tis, BM, ad omnia quadrata, BM, demptis omnibus quadratis figu-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0352-01
"
xlink:href
="
note-0352-01a
"
xml:space
="
preserve
">1.2,elem.</
note
>
ræ, BFMH; </
s
>
<
s
xml:id
="
echoid-s8090
"
xml:space
="
preserve
">erunt vt rectangulum ſub, EF, & </
s
>
<
s
xml:id
="
echoid-s8091
"
xml:space
="
preserve
">compoſita ex {1/2}. </
s
>
<
s
xml:id
="
echoid-s8092
"
xml:space
="
preserve
">E
<
lb
/>
F, & </
s
>
<
s
xml:id
="
echoid-s8093
"
xml:space
="
preserve
">ſexquitertia, EM, ad rectangulum ſub eadem altitudine, EF,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s8094
"
xml:space
="
preserve
">ſub compoſita ex {5/6}. </
s
>
<
s
xml:id
="
echoid-s8095
"
xml:space
="
preserve
">EF, & </
s
>
<
s
xml:id
="
echoid-s8096
"
xml:space
="
preserve
">ſexquitertia, FM, .</
s
>
<
s
xml:id
="
echoid-s8097
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s8098
"
xml:space
="
preserve
">vt compoſita
<
lb
/>
ex {1/2}. </
s
>
<
s
xml:id
="
echoid-s8099
"
xml:space
="
preserve
">EF, vel {1/2}. </
s
>
<
s
xml:id
="
echoid-s8100
"
xml:space
="
preserve
">ED, & </
s
>
<
s
xml:id
="
echoid-s8101
"
xml:space
="
preserve
">ſexquitertia, EM, ad compoſitam ex {5/6}. </
s
>
<
s
xml:id
="
echoid-s8102
"
xml:space
="
preserve
">E
<
lb
/>
F, & </
s
>
<
s
xml:id
="
echoid-s8103
"
xml:space
="
preserve
">ſexquitertia, FM, ideſt vt, EM, cum {1/3}. </
s
>
<
s
xml:id
="
echoid-s8104
"
xml:space
="
preserve
">ME, & </
s
>
<
s
xml:id
="
echoid-s8105
"
xml:space
="
preserve
">{1/2}. </
s
>
<
s
xml:id
="
echoid-s8106
"
xml:space
="
preserve
">ED, ad, M
<
lb
/>
F, cum {1/2}. </
s
>
<
s
xml:id
="
echoid-s8107
"
xml:space
="
preserve
">MF, & </
s
>
<
s
xml:id
="
echoid-s8108
"
xml:space
="
preserve
">{5/6}. </
s
>
<
s
xml:id
="
echoid-s8109
"
xml:space
="
preserve
">FE, quod oſtendere oportebat.</
s
>
<
s
xml:id
="
echoid-s8110
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div801
"
type
="
section
"
level
="
1
"
n
="
474
">
<
head
xml:id
="
echoid-head494
"
xml:space
="
preserve
">THEOREMA XXXV. PROPOS. XXXVII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s8111
"
xml:space
="
preserve
">IN figura Prop. </
s
>
<
s
xml:id
="
echoid-s8112
"
xml:space
="
preserve
">32. </
s
>
<
s
xml:id
="
echoid-s8113
"
xml:space
="
preserve
">oſtendemus, regula, DF, omnia qua-
<
lb
/>
drata ſemiparabolæ, DBE, ad omnia quadrata ſiguræ,
<
lb
/>
CBDF, demptis omnibus quadratis trilinei, BCF, eſſe vt
<
lb
/>
octaua pars, DF, ad duas tertias eiuſdem, DF, .</
s
>
<
s
xml:id
="
echoid-s8114
"
xml:space
="
preserve
">i. </
s
>
<
s
xml:id
="
echoid-s8115
"
xml:space
="
preserve
">vt 3. </
s
>
<
s
xml:id
="
echoid-s8116
"
xml:space
="
preserve
">ad 16.</
s
>
<
s
xml:id
="
echoid-s8117
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s8118
"
xml:space
="
preserve
">Nam omnia quadrata ſemiparabolæ, BDE, ſunt dimidium om.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s8119
"
xml:space
="
preserve
">
<
figure
xlink:label
="
fig-0352-01
"
xlink:href
="
fig-0352-01a
"
number
="
238
">
<
image
file
="
0352-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/05TCTFNR/figures/0352-01
"/>
</
figure
>
nium quadratorum, AE, ideſt
<
lb
/>
ſunt ad illa, vt {1/2}. </
s
>
<
s
xml:id
="
echoid-s8120
"
xml:space
="
preserve
">quadrati, D
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0352-02
"
xlink:href
="
note-0352-02a
"
xml:space
="
preserve
">20. huius.</
note
>
E, ad quadratum, DE, item
<
lb
/>
omnia quadrata, AE, ad om-
<
lb
/>
nia quadrata, AF, ſunt vt qua-
<
lb
/>
dratum, DE, ad quadratum,
<
lb
/>
DF; </
s
>
<
s
xml:id
="
echoid-s8121
"
xml:space
="
preserve
">tandem omnia quadrata,
<
lb
/>
DF, ad omnia quadrata figurę,
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0352-03
"
xlink:href
="
note-0352-03a
"
xml:space
="
preserve
">Corol. 32.
<
lb
/>
huius.</
note
>
CBDF, demptis omnibus
<
lb
/>
quadratis trilinei, BCF, ſunt ſexquialtera, ideſt ſunt vt quadratũ,
<
lb
/>
DF, ad rectangulum ſub, DF, & </
s
>
<
s
xml:id
="
echoid-s8122
"
xml:space
="
preserve
">{2/3}. </
s
>
<
s
xml:id
="
echoid-s8123
"
xml:space
="
preserve
">DF, ergo, exæquali, </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>