Archimedes, Natation of bodies, 1662

Page concordance

< >
Scan Original
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
< >
page |< < of 68 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <pb xlink:href="073/01/036.jpg" pagenum="366"/>
            <figure id="id.073.01.036.1.jpg" xlink:href="073/01/036/1.jpg" number="32"/>
            <p type="main">
              <s>
                <emph type="italics"/>
              For if it be poſſible, let it fall ſhort of it: and let R T be pro­
                <lb/>
              longed as farre as to A C in V: and then thorow V draw V X pa­
                <lb/>
              rallel to F D. Now, by the thing we have last demonſtrated, A X
                <lb/>
              ſhall have the ſame proportion unto A R, as A F hath to A E.
                <lb/>
              </s>
              <s>But A S hath alſo the ſame proportion to A R: Wherefore
                <emph.end type="italics"/>
              (a)
                <lb/>
                <arrow.to.target n="marg1226"/>
                <lb/>
              A S
                <emph type="italics"/>
              is equall to A X, the part to the whole, which is impoſſi­
                <lb/>
              ble. </s>
              <s>The ſame abſurdity will follow if we ſuppoſe the Toint
                <lb/>
              T to fall beyond the Line A C: It is therefore neceſſary that
                <lb/>
              it do fall in the ſaid A C. </s>
              <s>Which we propounded to be demonstrated.
                <emph.end type="italics"/>
              </s>
            </p>
            <p type="margin">
              <s>
                <margin.target id="marg1226"/>
              (a)
                <emph type="italics"/>
              By 9. of the
                <lb/>
              fifth.
                <emph.end type="italics"/>
              </s>
            </p>
            <p type="head">
              <s>LEMMA III.</s>
            </p>
            <p type="main">
              <s>Let there be a Parabola, whoſe Diameter
                <lb/>
                <arrow.to.target n="marg1227"/>
                <lb/>
              let be A B; and let the Right Lines A C and B D be ^{*} con­
                <lb/>
              tingent to it, A C in the Point C, and B D in B: And two
                <lb/>
              Lines being drawn thorow C, the one C E, parallel unto
                <lb/>
              the Diameter; the other C F, parallel to B D; take any
                <lb/>
              Point in the Diameter, as G; and as F B is to B G, ſo let B
                <lb/>
              G be to B H: and thorow G and H draw G K L, and H E
                <lb/>
              M, parallel unto B D; and thorow M draw M N O parallel
                <lb/>
              to
                <emph type="italics"/>
              A C,
                <emph.end type="italics"/>
              and cutting the Diameter in O: and the Line
                <emph type="italics"/>
              N P
                <emph.end type="italics"/>
                <lb/>
              being drawn thorow
                <emph type="italics"/>
              N
                <emph.end type="italics"/>
              unto the Diameter let it be parallel
                <lb/>
              to B D. </s>
              <s>I ſay that H O is double to G B.</s>
            </p>
            <p type="margin">
              <s>
                <margin.target id="marg1227"/>
              * Or touch it.</s>
            </p>
            <p type="main">
              <s>
                <emph type="italics"/>
              For the Line M N O cutteth the Diameter either in G, or in other Points: and if it do
                <lb/>
              cut it in G, one and the ſame Point ſhall be noted by the two letters G and O. </s>
              <s>Therfore F C,
                <lb/>
              P N, and H E M being Parallels, and A C being Parallels to M N O, they ſhall make the
                <emph.end type="italics"/>
                <lb/>
                <figure id="id.073.01.036.2.jpg" xlink:href="073/01/036/2.jpg" number="33"/>
                <lb/>
                <emph type="italics"/>
              Triangles A F C, O P N and O H M like to
                <emph.end type="italics"/>
                <lb/>
                <arrow.to.target n="marg1228"/>
                <lb/>
                <emph type="italics"/>
              each other: Wherefore
                <emph.end type="italics"/>
              (a)
                <emph type="italics"/>
              O H ſhall be to
                <lb/>
              H M, as A F to FC: and
                <emph.end type="italics"/>
              ^{*} Permutando,
                <lb/>
                <arrow.to.target n="marg1229"/>
                <lb/>
                <emph type="italics"/>
              O H ſhall be to A F, as H M to F C: But
                <lb/>
              the Square H M is to the Square G L as the Line
                <lb/>
              H B is to the Line B G, by 20. of our firſt Book
                <lb/>
              of
                <emph.end type="italics"/>
              Conicks;
                <emph type="italics"/>
              and the Square G L is unto the
                <lb/>
              Square F C, as the Line G B is to the Line B F:
                <lb/>
              and the Lines H B, B G and B F are thereupon
                <emph.end type="italics"/>
                <lb/>
                <arrow.to.target n="marg1230"/>
                <lb/>
                <emph type="italics"/>
              Proportionals: Therefore the
                <emph.end type="italics"/>
              (b)
                <emph type="italics"/>
              Squares
                <lb/>
              H M, G L and F C and there Sides, ſhall alſo be
                <lb/>
              Proportionals: And, therefore, as the (c)
                <lb/>
              Square H M is to the Square G L, ſo is the Line
                <emph.end type="italics"/>
                <lb/>
                <arrow.to.target n="marg1231"/>
                <lb/>
                <emph type="italics"/>
              H M to the Line F C: But as H M is to F C, ſo
                <lb/>
              is O H to A F; and as the Square H M is to
                <lb/>
              the Square G L, ſo is the Line H B to B G; that
                <lb/>
              is, B G to B F: From whence it followeth that
                <lb/>
              O H is to A F, as B G to B F: And
                <emph.end type="italics"/>
              Permu­
                <lb/>
              tando,
                <emph type="italics"/>
              O H is to B G, as A F to F B; But A F is double to F B: Therefore A B and B F
                <lb/>
              are equall, by 35. of our firſt Book of
                <emph.end type="italics"/>
              Conicks:
                <emph type="italics"/>
              And therefore N O is double to G B:
                <lb/>
              Which was to be demonſtrated.
                <emph.end type="italics"/>
              </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>