Apollonius <Pergaeus>, Apollonii Pergaei Conicorvm Lib. V. VI. VII. paraphraste Abalphato Asphahanensi : nunc primum editi ; additvs in calce Archimedis assvmptorvm liber, ex codibvs arabicis mss Abrahamus Ecchellensis Maronita latinos reddidit, Jo. Alfonsvs Borellvs curam in geometricis versione contulit & [et] notas vberiores in vniuersum opus adiecit

Page concordance

< >
Scan Original
351 312
352 313
353 314
354 315
355 316
356 317
357 318
358 319
359 320
360 321
361 322
362 323
363 324
364 325
365 326
366 327
367 328
368 329
369 330
370 331
371 332
372 333
373 334
374 335
375 336
376 337
377 338
378 339
379 340
380 341
< >
page |< < (323) of 458 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div976" type="section" level="1" n="309">
          <pb o="323" file="0361" n="362" rhead="Conicor. Lib. VII."/>
          <p style="it">
            <s xml:id="echoid-s11442" xml:space="preserve">Dato latere recto I K diametri hyperboles I L reperire latus rectum
              <lb/>
              <note position="right" xlink:label="note-0361-01" xlink:href="note-0361-01a" xml:space="preserve">PROP. 2.
                <lb/>
              Addit.</note>
            alterius Diametri, quod æquale ſit lateri recto I K: </s>
            <s xml:id="echoid-s11443" xml:space="preserve">oportet autem,
              <lb/>
            vt Diameter I L cadat inter axim, @ aliam Diametrum, quæ ſub-
              <lb/>
            dupla ſit ſui erecti.</s>
            <s xml:id="echoid-s11444" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s11445" xml:space="preserve">Reperiatur Diameter Q P, quæ ſubdupla ſit ſui erecti P R, eiuſque latus
              <lb/>
              <note position="right" xlink:label="note-0361-02" xlink:href="note-0361-02a" xml:space="preserve">ex 35. hu.</note>
            ſit M C; </s>
            <s xml:id="echoid-s11446" xml:space="preserve">ergo ex hypotheſi I L cadet inter axim A C, & </s>
            <s xml:id="echoid-s11447" xml:space="preserve">Diametrum P Q,
              <lb/>
            & </s>
            <s xml:id="echoid-s11448" xml:space="preserve">propterea terminus E lateris C E cadet inter A, & </s>
            <s xml:id="echoid-s11449" xml:space="preserve">M, igitur reperiri po-
              <lb/>
            terit V G, quæ ad G E eandem proportionem habeat, quàm maior M H ad
              <lb/>
            minorem H E, & </s>
            <s xml:id="echoid-s11450" xml:space="preserve">vt prius, lateris C V ducatur diameter S T, cuius latus
              <lb/>
            rectum S Z: </s>
            <s xml:id="echoid-s11451" xml:space="preserve">dico S Z æquale eße I K: </s>
            <s xml:id="echoid-s11452" xml:space="preserve">quia V G ad G E eſt, vt M H, ſeu
              <lb/>
              <note position="right" xlink:label="note-0361-03" xlink:href="note-0361-03a" xml:space="preserve">Lem. 4.
                <lb/>
              huius.
                <lb/>
              Lem. 5.
                <lb/>
              huius.</note>
            G H ad H E, ergo rectangulum ſub V G E in E H æquale eſt quadrato G E,
              <lb/>
            ideoque S Z æquale I K; </s>
            <s xml:id="echoid-s11453" xml:space="preserve">quod erat propoſitum.</s>
            <s xml:id="echoid-s11454" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s11455" xml:space="preserve">Deducitur ex prima propoſitione additarum quod in aliqua hyperbola reperi-
              <lb/>
            ri poßunt tria diametrorum latera recta æqualia inter ſe; </s>
            <s xml:id="echoid-s11456" xml:space="preserve">ſi nimirum in hyper-
              <lb/>
            bola, cuius axis C A minor ſit medietate eius lateris recti, reperiantur vtrin-
              <lb/>
            que duæ diametri b a, quarum latera recta a c æqualia ſint ipſi A F; </s>
            <s xml:id="echoid-s11457" xml:space="preserve">tunc
              <lb/>
            quidem tria illa latera recta æqualia erunt inter ſe: </s>
            <s xml:id="echoid-s11458" xml:space="preserve">reliqua verò latera recta
              <lb/>
            diametrorum cadentium inter A, & </s>
            <s xml:id="echoid-s11459" xml:space="preserve">a maiora erunt latere recto A F; </s>
            <s xml:id="echoid-s11460" xml:space="preserve">& </s>
            <s xml:id="echoid-s11461" xml:space="preserve">la-
              <lb/>
            tera recta diametrorum cadentium vltra punctum a ad partes B maiora ſunt
              <lb/>
              <note position="right" xlink:label="note-0361-04" xlink:href="note-0361-04a" xml:space="preserve">ex 35.
                <lb/>
              huius.</note>
            latere recto a c, propterea quod magis recedunt ab omnium minimo latere re-
              <lb/>
            cto P R.</s>
            <s xml:id="echoid-s11462" xml:space="preserve"/>
          </p>
          <p style="it">
            <s xml:id="echoid-s11463" xml:space="preserve">Simili modo in eadem hyperbola reperiri poßunt quatuor diametrorum latera
              <lb/>
            recta æqualia inter ſe, ſi nimirum ex ſecunda propoſitione additarum dato la-
              <lb/>
            tere recto I K diametri I L reperiatur æquale latus rectum S Z alterius diame-
              <lb/>
            tri S T, & </s>
            <s xml:id="echoid-s11464" xml:space="preserve">ex altera parte axis ducantur duæ aliæ diametri æquè ab axi re-
              <lb/>
            motæ ac illæ, erunt quatuor recta latera earum æqualia inter ſe, & </s>
            <s xml:id="echoid-s11465" xml:space="preserve">maiora
              <lb/>
            quolibet latere recto diametri cadentis inter I, & </s>
            <s xml:id="echoid-s11466" xml:space="preserve">S ad vtraſque partes axis:
              <lb/>
            </s>
            <s xml:id="echoid-s11467" xml:space="preserve">minora verò erunt quolibet latere recto diametri cadentis vltra punctum I ad
              <lb/>
            partes verticis A, vel infra puncta S ad partes a, vt deducitur ex 35. </s>
            <s xml:id="echoid-s11468" xml:space="preserve">huius.</s>
            <s xml:id="echoid-s11469" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div984" type="section" level="1" n="310">
          <head xml:id="echoid-head383" xml:space="preserve">SECTIO SEPTIMA</head>
          <head xml:id="echoid-head384" xml:space="preserve">Continens Propoſit. XXXVIII. XXXIX.
            <lb/>
          & XXXX.</head>
          <head xml:id="echoid-head385" xml:space="preserve">PROPOSITIO XXXVIII.</head>
          <p>
            <s xml:id="echoid-s11470" xml:space="preserve">IN hyperbole axis inclinatus ſi non fuerit minortriente erecti
              <lb/>
            ipſius, erunt duo latera figuræ axis minora, quàm duo late-
              <lb/>
            ra figuræ cuiuslibet inclinatæ coniugatarum, quæ in eadem ſe-
              <lb/>
            ctione conſiſtunt, & </s>
            <s xml:id="echoid-s11471" xml:space="preserve">duo latera figuræ inclinati proximioris axi
              <lb/>
            minora ſunt, quàm duo latera figuræ remotioris inclinati.</s>
            <s xml:id="echoid-s11472" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>