Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
91 79
92 80
93 81
94 82
95 89
96 84
97 85
98 96
99 87
100 88
101 89
102 90
103 91
104 92
105 93
106 94
107 95
108 96
109 97
110 98
111 99
112 100
113 101
114 102
115 103
116 104
117 105
118 106
119 107
120 108
< >
page |< < (353) of 445 > >|
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div477" type="chapter" level="2" n="6">
            <div xml:id="echoid-div676" type="section" level="3" n="30">
              <div xml:id="echoid-div676" type="letter" level="4" n="1">
                <pb o="353" rhead="EPISTOL AE." n="365" file="0365" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0365"/>
              </div>
            </div>
            <div xml:id="echoid-div680" type="section" level="3" n="31">
              <div xml:id="echoid-div680" type="letter" level="4" n="1">
                <head xml:id="echoid-head517" xml:space="preserve">DE MODO DIVIDENDI PARABOLAM
                  <lb/>
                propoſitam ſecundum datam proportionem.</head>
                <head xml:id="echoid-head518" style="it" xml:space="preserve">Pamphilo Gothfrid.</head>
                <p>
                  <s xml:id="echoid-s4244" xml:space="preserve">
                    <emph style="sc">QVod</emph>
                  à me quæris, eſt quidem poſſibile, non tamen adhuc inuentum, quo
                    <lb/>
                  niam nemo ad
                    <reg norm="hunc" type="context">hũc</reg>
                  vſque diem diuiſit vnam datam proportionem in tres
                    <lb/>
                  æquales partes, ſed ſi hoc pro facto conceſſeris, nunc tibi morem geram.
                    <lb/>
                  </s>
                  <s xml:id="echoid-s4245" xml:space="preserve">Nam proponis n. ihi parabolem
                    <var>.x.b.e.</var>
                  cum proportione
                    <var>.p.</var>
                  ad
                    <var>.q.</var>
                    <reg norm="cupiſque" type="simple">cupiſq́;</reg>
                    <lb/>
                  ſcire modum diuidendi ipſam parabolem vna mediante linea parallela ipſi baſi, ita
                    <lb/>
                  vt eandem habeat proportionem tota parabola ad partem abſciſſam, quæ eſt inter
                    <var>.
                      <lb/>
                    p.</var>
                  et
                    <var>.q</var>
                  . </s>
                  <s xml:id="echoid-s4246" xml:space="preserve">Ad quod faciendum, ſupponendum primò datam proportionem inter
                    <var>.
                      <lb/>
                    p.</var>
                  et
                    <var>.q.</var>
                  diuiſam eſſe in tres partes æquales, duabus lineis mediantibus
                    <var>.n.</var>
                  et
                    <var>.u.</var>
                  quæ me
                    <lb/>
                  diæ proportionales vocabuntur inter
                    <var>.p.</var>
                  et
                    <var>.q</var>
                  . </s>
                  <s xml:id="echoid-s4247" xml:space="preserve">deinde à quouis puncto circunferentię
                    <lb/>
                  ipſius figuræ ducatur parallela baſi
                    <var>.x.e.</var>
                  poſtea verò per puncta media harum dua-
                    <lb/>
                  rum
                    <reg norm="æquidiſtantium" type="context">æquidiſtantiũ</reg>
                  protrahatur
                    <var>.g.b.</var>
                  quæ diameter erit ſectionis, ex 28. ſecundi Per-
                    <lb/>
                  gei, </s>
                  <s xml:id="echoid-s4248" xml:space="preserve">diuidatur deinde hæc diameter in puncto
                    <var>.a.</var>
                  ita quod eadem proportio ſit ipſius
                    <lb/>
                    <var>b.g.</var>
                  ad
                    <var>.b.a.</var>
                  quæ ipſius
                    <var>.p.</var>
                  ad
                    <var>.u.</var>
                  quod tibi facile erit, ſecando à linea
                    <var>.p.</var>
                  partem
                    <var>.i.</var>
                  æqua
                    <lb/>
                  lem ipſi
                    <var>.u.</var>
                  tali modo poſtea diuidendo
                    <var>.b.g.</var>
                  ex .12. ſexti, ducatur a puncto
                    <var>.a.</var>
                  ipſa
                    <var>.d.
                      <lb/>
                    h.</var>
                  parallclam ipſi
                    <var>.x.e.</var>
                  & habebitur propoſitum.</s>
                </p>
                <p>
                  <s xml:id="echoid-s4249" xml:space="preserve">Pro cuius reiratione, ſcies primum quod
                    <var>.h.d.</var>
                  diuiſa erit à diametro
                    <var>.b.g.</var>
                  per æqua
                    <lb/>
                  lia ex .7. primi Pergei, vel ſi cogitabimus aliquam lineam tangentem ipſam parabo
                    <lb/>
                  lam in puncto
                    <var>.b</var>
                  . </s>
                  <s xml:id="echoid-s4250" xml:space="preserve">tunc ex quinta ſecundi ipſius Pergei habebimus ipſam eſſe paralle-
                    <lb/>
                  lam
                    <var>.e.x.</var>
                  & ex .30. primi Eucli. erit ſimiliter æquidiſtans
                    <var>.d.h.</var>
                  vnde ex .46. primi eiuſ-
                    <lb/>
                  dem Pergei
                    <var>.h.a.</var>
                  æqualis erit
                    <var>.d.a</var>
                  . </s>
                  <s xml:id="echoid-s4251" xml:space="preserve">Protrahatur deinde
                    <var>.e.b</var>
                  : d b:
                    <var>x.b.</var>
                  et
                    <var>.h.b.</var>
                  vnde ex .17
                    <lb/>
                  lib. de quadratura parabolæ Archimedis, habebimus eandem proportionem ſuper
                    <lb/>
                  ficiei totalis parabolæ
                    <var>.x.b.e.</var>
                  ad trigonum
                    <var>.x.b.e.</var>
                  quæ portionis
                    <var>.h.b.d.</var>
                  ad ſuum
                    <reg norm="tri- gonum" type="context">tri-
                      <lb/>
                    gonũ</reg>
                  , eo quod
                    <reg norm="tam" type="context">tã</reg>
                  vna quàm alia erit ſeſquitertia,
                    <reg norm="eius" type="simple">eiꝰ</reg>
                    <reg norm="etiam" type="context">etiã</reg>
                  medietates ſic ſe
                    <reg norm="habebunt" type="context">habebũt</reg>
                  .</s>
                </p>
                <p>
                  <s xml:id="echoid-s4252" xml:space="preserve">Vnde permutando, proportio medietatis totalis parabolę ad medietatem partia
                    <lb/>
                  lem ipſius, æqualis erit proportioni trianguli
                    <lb/>
                    <var>g.b.e.</var>
                  ad triangulum
                    <var>.a.b.d.</var>
                  ſed ex .20. primi
                    <lb/>
                  Pergei, eadem eſt proportio quadrati ipſius
                    <var>.
                      <lb/>
                      <figure xlink:label="fig-0365-01" xlink:href="fig-0365-01a" number="402">
                        <image file="0365-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0365-01"/>
                      </figure>
                    g.e.</var>
                  ad quadratum ipſius
                    <var>.a.d.</var>
                  quæ
                    <var>.b.g.</var>
                  ad
                    <var>.b.a.</var>
                    <lb/>
                  hoc eſt, vt
                    <var>.g.e.</var>
                  ad
                    <var>.a.o.</var>
                  ex ſimilitudine triangu-
                    <lb/>
                  lorum, & quia
                    <var>.b.g.</var>
                  ad
                    <var>.b.a.</var>
                  eſt ſicut
                    <var>.p.</var>
                  ad
                    <var>.u.</var>
                  ita
                    <lb/>
                  igitur erit quadrati ipſius
                    <var>.g.e.</var>
                  ad quadratum
                    <lb/>
                  ipſeus
                    <var>.a.d.</var>
                  </s>
                  <s xml:id="echoid-s4253" xml:space="preserve">quare
                    <var>.g.e.</var>
                  ad
                    <var>.a.d.</var>
                  erit ut p. ad
                    <var>.n.</var>
                    <lb/>
                  ex .18. ſexti Euclid. </s>
                  <s xml:id="echoid-s4254" xml:space="preserve">ſed cum ex .24. eiuſdem
                    <lb/>
                  proportio trianguli
                    <var>.b.g.e.</var>
                  ad triangulum
                    <var>.b.
                      <lb/>
                    a.d.</var>
                  compoſita ſit ex proportione
                    <var>.g.e.</var>
                  ad
                    <var>.a.
                      <lb/>
                    d.</var>
                  er. ex
                    <var>.g.b.</var>
                  ad
                    <var>.b.a.</var>
                  hoc eſt
                    <var>.g.e.</var>
                  ad
                    <var>.a.o.</var>
                  &
                    <lb/>
                  quia
                    <reg norm="proportio" type="simple">ꝓportio</reg>
                    <var>.g.e.</var>
                  ad
                    <var>.a.o.</var>
                  æqualis eſt ei quæ
                    <var>.p.</var>
                    <lb/>
                  ad. u ex .11. quinti Euclid. </s>
                  <s xml:id="echoid-s4255" xml:space="preserve">& proportio
                    <var>.g.e.</var>
                    <lb/>
                  ad
                    <var>.a.d.</var>
                  æqualis eſt ei quæ
                    <var>.p.</var>
                  ad
                    <var>.n.</var>
                  hoc eſt vt
                    <var>.u.</var>
                    <lb/>
                  ad
                    <var>.q.</var>
                  ergo proportio trianguli
                    <var>.b.g.e.</var>
                  ad trian-
                    <lb/>
                  gulum
                    <var>.b.a.d.</var>
                  compoſita erit ex ca quę
                    <var>.p.</var>
                  ad
                    <var>.u.</var>
                    <lb/>
                  & ex ea quæ
                    <var>.u.</var>
                  ad
                    <var>.q.</var>
                  æqualis ergo erit ei, quæ
                    <lb/>
                  p. ad
                    <var>.q.</var>
                  & ita medietates parabolarum, & eorum dupla.</s>
                </p>
              </div>
            </div>
          </div>
        </div>
      </text>
    </echo>