Apollonius <Pergaeus>; Lawson, John, The two books of Apollonius Pergaeus, concerning tangencies, as they have been restored by Franciscus Vieta and Marinus Ghetaldus : with a supplement to which is now added, a second supplement, being Mons. Fermat's Treatise on spherical tangencies

Page concordance

< >
Scan Original
11 (vii)
12
13
14 (2)
15 (3)
16 (4)
17 (5)
18 (6)
19 (7)
20 (8)
21 (9)
22 (10)
23 (11)
24 (12)
25 (13)
26 (14)
27 (15)
28 (16)
29 (17)
30
31 (19)
32 (20)
33 (21)
34 (22)
35 (23)
36 (24)
37 (25)
38 (26)
39 (27)
40 (28)
< >
page |< < ((25)) of 161 > >|
    <echo version="1.0RC">
      <text xml:lang="en" type="free">
        <div xml:id="echoid-div46" type="section" level="1" n="46">
          <p>
            <s xml:id="echoid-s820" xml:space="preserve">
              <pb o="(25)" file="0037" n="37"/>
            which RUM by Lemma II. </s>
            <s xml:id="echoid-s821" xml:space="preserve">is equal to a rectangle under UO and a line
              <lb/>
            drawn through the points U and O to the further ſurface of the ſphere YN.
              <lb/>
            </s>
            <s xml:id="echoid-s822" xml:space="preserve">Therefore the point Q is in the ſurface of the ſphere YN; </s>
            <s xml:id="echoid-s823" xml:space="preserve">it is therefore
              <lb/>
            common to the ſpheres YN and OTS; </s>
            <s xml:id="echoid-s824" xml:space="preserve">and I ſay that theſe ſpheres touch in
              <lb/>
            the ſaid point Q. </s>
            <s xml:id="echoid-s825" xml:space="preserve">For from the point U let a line UZ be drawn in any
              <lb/>
            plane of the ſphere OTS, and being produced let it cut the three
              <lb/>
            ſpheres in the points Z, D, H, K, P, B. </s>
            <s xml:id="echoid-s826" xml:space="preserve">The rectangle ZUB in the
              <lb/>
            ſphere OTS is by Lemma I. </s>
            <s xml:id="echoid-s827" xml:space="preserve">and II. </s>
            <s xml:id="echoid-s828" xml:space="preserve">equal to the rectangle DUP terminated
              <lb/>
            by the ſpheres XM and YN. </s>
            <s xml:id="echoid-s829" xml:space="preserve">But DU is greater than ZU, becauſe the
              <lb/>
            ſpheres XM and OTS touch in the point O, and therefore any other line from
              <lb/>
            U but UO muſt meet the ſurface of OTS before it meets the ſurface XM. </s>
            <s xml:id="echoid-s830" xml:space="preserve">
              <lb/>
            Since then ZUB = DUP, and DU is greater than ZU, UP muſt be leſs
              <lb/>
            than UB, and the point B will fall without the ſphere YN; </s>
            <s xml:id="echoid-s831" xml:space="preserve">and by the
              <lb/>
            fame reaſon, all other points in the ſurface of the ſphere OTS, except the
              <lb/>
            point Q.</s>
            <s xml:id="echoid-s832" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s833" xml:space="preserve">
              <emph style="sc">The</emph>
            Demonſtration is ſimilar and equally eaſy in all caſes, whether the
              <lb/>
            ſpheres touch exlernally or internally.</s>
            <s xml:id="echoid-s834" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div47" type="section" level="1" n="47">
          <head xml:id="echoid-head54" xml:space="preserve">LEMMA IV.</head>
          <p>
            <s xml:id="echoid-s835" xml:space="preserve">
              <emph style="sc">Let</emph>
            there be a plane AC, and a ſphere FGD through whoſe center O let
              <lb/>
            FODB be drawn perpendicular to the plane, and from F any right line
              <lb/>
            FGA cutting the ſphere in G and the plane in A; </s>
            <s xml:id="echoid-s836" xml:space="preserve">I ſay that the rectangle
              <lb/>
            AFG = the rectangle BFD. </s>
            <s xml:id="echoid-s837" xml:space="preserve">For let the given ſphere and plane be cut by
              <lb/>
            the plane of the triangle ABF, the ſection of the one will be the circle GDF,
              <lb/>
            and of the other the right line ABC. </s>
            <s xml:id="echoid-s838" xml:space="preserve">Since the line FB is perpendicular
              <lb/>
            to the plane AC, it will be alſo to the right line AC. </s>
            <s xml:id="echoid-s839" xml:space="preserve">Having then a circle
              <lb/>
            FDB, and a right line AC in the ſame plane; </s>
            <s xml:id="echoid-s840" xml:space="preserve">and a line FDB paſſing thro'
              <lb/>
            the center perpendicular to AC, join D and G, and in the quadrilateral
              <lb/>
            figure ABDG the angles at B and G being both right ones, it will be in a
              <lb/>
            circle, and the rectangle AFG = the rectangle BFD; </s>
            <s xml:id="echoid-s841" xml:space="preserve">and the ſame may be
              <lb/>
            proved in any other ſection of the ſphere.</s>
            <s xml:id="echoid-s842" xml:space="preserve"/>
          </p>
        </div>
        <div xml:id="echoid-div48" type="section" level="1" n="48">
          <head xml:id="echoid-head55" xml:space="preserve">LEMMA V.</head>
          <p>
            <s xml:id="echoid-s843" xml:space="preserve">
              <emph style="sc">Let</emph>
            there be a plane ABD and a ſphere EGF, through whoſe center O
              <lb/>
            let FOEC be drawn perpendicular to the plane, and in any other plane let
              <lb/>
            FHI be drawn ſo that the rectangle IFH = the rectangle CFE: </s>
            <s xml:id="echoid-s844" xml:space="preserve">if </s>
          </p>
        </div>
      </text>
    </echo>