Theodosius <Bithynius>; Clavius, Christoph, Theodosii Tripolitae Sphaericorum libri tres

Table of figures

< >
[Figure 181]
[Figure 182]
[Figure 183]
[Figure 184]
[Figure 185]
[Figure 186]
[Figure 187]
[Figure 188]
[Figure 189]
[Figure 190]
[Figure 191]
[Figure 192]
[Figure 193]
[Figure 194]
[Figure 195]
[Figure 196]
[Figure 197]
[Figure 198]
[Figure 199]
[Figure 200]
[Figure 201]
[Figure 202]
[Figure 203]
[Figure 204]
[Figure 205]
[Figure 206]
[Figure 207]
[Figure 208]
[Figure 209]
[Figure 210]
< >
page |< < (359) of 532 > >|
371359 tra A, & C, erunt arcus BAD, BCD, ſemicirculi; cum circuli maximi ſe mu-
1111. 1 Theod. tuo bifariam ſecent.
Quare tam arcus BA,
197[Figure 197] BC, ſemicirculo minor eſt.
Eodem modo,
productis arcubus AB, AC, oſtendemus ar
cum AC, ſemicirculo eſſe minorem.
Con-
uenient autem arcus BA, BC, producti vl-
tra puncta A, &
C, propterea quòd ſphæ-
ricos angulos faciunt cũ arcu AC, ſuntq̀;
omnes tres arcus portiones circulorum ma
ximorum, qui ſe mutuo ſecant in punctis
A,B, C, non autem tangunt.
Hinc enim
fit, vt vterque arcus BA, BC, productus arcum AC, productum ſecet in pun-
ctis A, C, vt ex defin.
conſtat; ac proinde inter ſe coeant vltra puncta A, C. In
omniergo triangulo ſphærico, &
c. Quod erat demon ſtrandum.
THEOR. 2. PROPOS. 3.
IN omni triangulo ſphærico, duo latera reli-
quo ſunt maiora, quomodocunque aſſumpta.
SIT triangulum ſphæricum ABC. Dico duo quælibet latera, vt AB, AC,
maiora eſſe latere BC.
Si enim triangulum eſt æquilaterum, manifeſtum eſt
duo ſimul dupla eſſe reliqui, atque adeo maiora.
Quod ſi alterum laterũ AB,
AC, æquale ſit lateri BC, vel maius,
198[Figure 198] vel etiã vtrumq;
maius, perſpicuum
quoque eſt, duo latera AB, AC, ma-
iora eſſe reliquo BC.
Si vero vtrum-
que latus AB, AC, aſſumptum late-
re tertio BC, minus ſit, demonſtrabi-
mus, latera AB, AC, ſimul maiora eſ-
ſe latere BC, hac ratione.
Perficia tur
circulus arcus tertij BC.
Deinde ex
polo B, nempe ex altero extremo ma
ioris lateris BC, ad interuallũ vtriuſ-
uis arcuum minorum, nimirum ad in-
teruallũ arcus BA, in ſuperficie ſphæ
ræ circulus deſcribatun AD, ſecans ar
cum BC, qui maior ponitur arcu BA,
in D, puncto inter B, &
C. Et quoniam
circulus BC, tranſit quoque per reliquum polum circuli AD;
ſit alter po-
22ſchol. 10. 1. lus E, qui per ſemicirculũ remotus erit à polo B;
ita vt ſemicirculus ſit BCE.
33Theod. Cum ergo arcus BC, ſemicirculo minor ſit, exiſtet polus E, vltra punctum C:
442. huius. Eſt autem punctum D, inter B, & C, vt dictum eſt. Punctum igitur C, inter
puncta D, E, cadet.
Quare cum ex puncto C, quod extra peripheriam circuli
AD, eſt, &
præter eiuſdem polum E, ſignatur, ducantur duo arcus maximorum
circulorum CB, CA, ſemicirculo minores (quòd latera ſint trianguli ſphæ-
552. huius. rici ABC.)
ad peripheriam AD, erit arcus CD, per polum B, tranſiens, mi-
66ſchol. 21. nor arcu CA.
Additis ergo æqualibus arcubus DB, AB; (ſunt autem æqua-
772 Theod.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index