Bernoulli, Daniel, Hydrodynamica, sive De viribus et motibus fluidorum commentarii

Page concordance

< >
Scan Original
31 17
32 18
33 19
34 20
35 21
36 22
37 23
38 24
39 25
40 26
41 27
42 28
43 29
44 30
45 31
46 32
47 33
48 34
49 35
50 36
51 37
52 38
53 39
54 40
55 41
56 42
57 43
58 44
59 45
60 46
< >
page |< < (24) of 361 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div28" type="section" level="1" n="22">
          <p>
            <s xml:id="echoid-s641" xml:space="preserve">
              <pb o="24" file="0038" n="38" rhead="HYDRODYNAMICÆ."/>
            potentias utcunque variabiles, quarum altera ſit ubique ad curvam, altera
              <lb/>
            ad A G perpendicularis: </s>
            <s xml:id="echoid-s642" xml:space="preserve">priorem ponemus in puncto D æqualem A, in
              <lb/>
            puncto E æqualem A + dA, alteram in puncto D = C, in puncto E = C + dC:
              <lb/>
            </s>
            <s xml:id="echoid-s643" xml:space="preserve">Sit porro AB = x, BD = y, AD = s, BC = dx, FE = dy, DE = ds, quod
              <lb/>
            elementum curvæ conſtantis magnitudinis ponatur; </s>
            <s xml:id="echoid-s644" xml:space="preserve">Radius Oſculi in puncto
              <lb/>
            D = R, in puncto E = R + dR. </s>
            <s xml:id="echoid-s645" xml:space="preserve">Dico æquationem ad curvam fore hanc - AdR
              <lb/>
            - R d A = (RdCdx + 2Cdyds + CdxdR) ds, vel poſito CRddx pro Cdyds
              <lb/>
            (eſt enim R = {dyds/ddx}) habebitur - AdR - RdA = (RdCdx + CRdds + Cdyds
              <lb/>
            + Cdx dR): </s>
            <s xml:id="echoid-s646" xml:space="preserve">ds, ſive {-ARds - RCdx/dx} = ſCdy.</s>
            <s xml:id="echoid-s647" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s648" xml:space="preserve">§. </s>
            <s xml:id="echoid-s649" xml:space="preserve">15. </s>
            <s xml:id="echoid-s650" xml:space="preserve">Intelligitur ex præcedente æquatione, quod cum potentiæ,
              <lb/>
            quæ ſunt ad curvam perpendiculares, ſolæ agunt, fiat AR = conſtanti quan-
              <lb/>
            titati, quia nempe ſic fit C = o: </s>
            <s xml:id="echoid-s651" xml:space="preserve">tunc igitur radius oſculi ubique ſequitur ra-
              <lb/>
            tionem inverſam potentiæ reſpondentis. </s>
            <s xml:id="echoid-s652" xml:space="preserve">At ſi potentiæ ad axem perpendi-
              <lb/>
            culares ſolæ adſunt, tunc evaneſcente littera A fit - {RCdx/ds} = ſCdy. </s>
            <s xml:id="echoid-s653" xml:space="preserve">Po-
              <lb/>
            teſt autem hæc æquatio integrari & </s>
            <s xml:id="echoid-s654" xml:space="preserve">ad hanc reduci formam RCdx
              <emph style="super">2</emph>
            = con-
              <lb/>
            ſtanti quantitati; </s>
            <s xml:id="echoid-s655" xml:space="preserve">ex qua apparet potentiam ductam in radium oſculi ubique
              <lb/>
            eſſe in ratione reciproca quadrati ſinus, quem applicata facit cum curva.
              <lb/>
            </s>
            <s xml:id="echoid-s656" xml:space="preserve">Similiter æquatio canonica integrationem admittit, cum potentiæ, quæ ad
              <lb/>
            axem perpendiculares ſunt, omnes inter ſe ſunt æquales ſeu proportionales
              <lb/>
            elemento curvæ d s. </s>
            <s xml:id="echoid-s657" xml:space="preserve">Ita enim poſito d C = o, obtinetur - AdR - RDA =
              <lb/>
            2ndyds + ndxdR, intelligendo per n conſtantem quantitatem, qua æqua-
              <lb/>
            tione recte tractata fit nydy + mmdy - nsds = dsſAdx, ubi m conſtans eſt
              <lb/>
            ab integratione proveniens.</s>
            <s xml:id="echoid-s658" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s659" xml:space="preserve">Si præterea potentiæ ad curvam normales ponantur applicatis y pro-
              <lb/>
            portionales, poterit ulterius reduci poſtrema æquatio ad hanc
              <lb/>
            - dx = (2ff - {gyy/h}) dy: </s>
            <s xml:id="echoid-s660" xml:space="preserve">√(2ny + 2mm)
              <emph style="super">2</emph>
            - (2ff - {gyy/h})
              <emph style="super">2</emph>
            ,
              <lb/>
            cujus conſtantes f & </s>
            <s xml:id="echoid-s661" xml:space="preserve">m caſibus particularibus erunt applicandæ, dum n & </s>
            <s xml:id="echoid-s662" xml:space="preserve">g pen-
              <lb/>
            dent à relatione potentiarum in puncto aliquo: </s>
            <s xml:id="echoid-s663" xml:space="preserve">unde ſi g = o, oritur catenaria, & </s>
            <s xml:id="echoid-s664" xml:space="preserve">
              <lb/>
            ſi n = o prodit elaſtica: </s>
            <s xml:id="echoid-s665" xml:space="preserve">generaliter vero inſervit æquatio ad curvaturam
              <lb/>
            lintei uniformiter gravis, cui fluidum ſuperincumbit, determinandam: </s>
            <s xml:id="echoid-s666" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>