Clavius, Christoph, Geometria practica

Table of figures

< >
[Figure 251]
[Figure 252]
[Figure 253]
[Figure 254]
[Figure 255]
[Figure 256]
[Figure 257]
[Figure 258]
[Figure 259]
[Figure 260]
[Figure 261]
[Figure 262]
[Figure 263]
[Figure 264]
[Figure 265]
[Figure 266]
[Figure 267]
[Figure 268]
[Figure 269]
[Figure 270]
[Figure 271]
[Figure 272]
[Figure 273]
[Figure 274]
[Figure 275]
[Figure 276]
[Figure 277]
[Figure 278]
[Figure 279]
[Figure 280]
< >
page |< < (360) of 450 > >|
388360GEOMETR. PRACT.
SCHOLIVM.
Hoc Theorema valdè vtile eſt ad deſcriptionem paralleli cuiuſuis circuli
maximi per datum punctum in Aſtrolabio, vt ex propoſ.
18. lib. 2. Aſtrolabij per-
ſpicuum eſt:
cum multa ibi demonſtrari poſsint per hoc Theorema, ſine ijs,
quæ ex Aſtrolabij deſcriptione pendent.
THEOR. 11. PROPOS. 29.
DESCRIPTIONEM Pentagoni æquilateri, & æquianguli ſupra
datam rectam ab Alberto Durero traditam, &
quam omnes fere Ar-
chitecti, atq;
artifices approbant, falſam eſſe, demonſtrare.
Praxis hæc eſt. Sit data recta A B. Ex centris A, B, & interuallo eodem
AB, deſcribantur duo circuli ſe ſe interſecantes in C, D.
Ducta autem CD, quã-
tacunque, deſcribatur eodem interuallo AB, ex C, per A, B, circulus rectam CD,
in E, &
priores circulos ſecans in F, G. Item ducantur ex F, G, per E, rectæ ſe-
cantes priores circulos in H, I.
Denique eodem interuallo ex HI, duo arcus de-
ſcripti ſe ſe interſecent in K@ iunganturque rectæ AI, IK, KH, HB.
Putat ergo Du-
rerus, pentagonum ABHKI, eſſe æquilaterum, &
æquiangulum. quod falſum
eſt.
Nam æquilaterum quidem eſt, ex deſcriptione, non autem æquiangulum.
quod vt manifeſtum fiat, demonſtranda ſunt prius nonnulla.
1. Arcvs tres FA, AB, BG, ſextæ partes circuliſunt, quod rectæ eos ſubtẽ-
dentes ſemidiametri ſint circuli FABG, ex conſtructione.
Igitur FABG, ſemi-
280[Figure 280]1131. tertij. circulus eſt, cuius diameter FG;
ideoque 22ſchol. 27.
tertij.
FEG, in ſemicirculo rectus:
Et diameter F G, re- ctæ AB, parallela, ob arcus A F, B G, æquales. Et
quoniã, vt conſtat ex demonſtratione praxis ſcho-
lij propoſ.
@0. & 11. lib. 1. Euclid. recta C D, ſecat re-
3329. primi. ctam AB, bifariam in M, &
ad angulos rectos; ſe- cabit eadem parallela quoque F G, ad angulosre-
44ſchol. 27.
tertij.
ctos in C.
Eadem quoq; CD, ſecabit arcum A B, bifariamin E, ac propterea toti arcus EF, EG, ęqua
556. quanti. les erunt, videlicet quadrantes;
ideoq; rectæ EF, EG, latera ſunt quadrati in circulo F A B G, deſcri-
66ſchol. 34.
primi.
pti, eiuſque diameter FG.
Igitur anguli F, G, ſemi- recti erunt: ac proinde cum anguliad C, recti ſint,
7732. primi. erunt quo que O E M, NEM, ſemirecti;
ideoq; & EOM, ENM, ſemirecti. Ac proinde tam latera E M, N O, quam E M, M N, 886. primi. qualia: atqueidcirco & OM, NM, inter ſe æqualia erunt; nec non & totæ OB,
NA, æquales erunt.
Immo & EO, EN, erunt æquales, quod latera EM, 994. primi. laterib. EM, MN, æqualia ſint, cõprehendãtq; angulos æquales, vt pote rectos.
2. Deinde quialatera AN, AI, lateribus BO, BH, æqualia ſunt; ſuntq; an-
guli N, O, ſemirecti æquales, &
vterque reliquorum angulorum I, H, minorre-
101019. primi. cto;
quod vterque minor ſit ſemirecto ad O, & N; propterea quod tam latus AN, minus eſt latere AI, ꝗ̃ latus B O, latere BH: eruntper ea, quæ ad finem lib.

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index