Bélidor, Bernard Forest de, La science des ingenieurs dans la conduite des travaux de fortification et d' architecture civile

Table of Notes

< >
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
[Note]
< >
page |< < (18) of 695 > >|
4018LA SCIENCE DES INGENIEURS,
20. L’on doit remarquer ici que de toutes les figures que l’on
peut
donner à un profil de muraille qui a quelque pouſſée à ſoûte-
nir
, il n’y en a point il faille moins de maçonnerie que dans
celle
qui eſt triangulaire, parce que le lévier CE, gagne par ſa
longueur
ce que le poids G, a de moins provenant d’un triangle,
11Fig. 15. que s’il provenoit d’un paralellograme, ce que je vais démontrer.
Ayant le paralellograme rectangle AD, dont la hauteur ſoit
égale
à celle du triangle précédent, &
que la puiſſance qui
22Fig. 10. pouſſe de K, en C, ou tire de C, en G, ſelon une direction para-
lelle
à l’horiſon, agiſſe avec la même force que celle du
triangle
ABC, l’on ſait que pour avoir l’épaiſſeur BD, il faut
doubler
la puiſſance K, &
en extraire la racine quarrée, puiſqu’a- 33Art. 15. près avoir fait les opérations ordinaires, il vient pour derniere
équation
√2bf\x{0020} = y, &
comme nous venons d’avoir √3bf\x{0020} = y pour
la
baſe du triangle, l’on peut donc dire que la ſuperficie du profil
rectangle
AD, ſera à celle du profil triangulaire, comme √2bf\x{0020} eſt
à
la moitié de √3bf\x{0020}, puiſque ne prenant que la moitié de la baſe
du
triangle, l’on peut regarder cette moitié comme la baſe du
rectangle
égal au triangle, mais la moitié de √3bf\x{0020} eſt beaucoup
moindre
que √2bf\x{0020}, &
pour en être convaincu, il n’y a qu’à faire
un
triangle rectangle &
iſocelle ABC, & ſupoſer que chaque quarré
44Fig. 14. des côtés BA, &
BC, eſt égal à bf, cela étant, l’hypotenuſe AC,
ou
ce qui eſt la même choſe, √2bf\x{0020}, pourra être regardée comme
exprimant
la baſe BD, du profil rectangle, &
ſi l’on fait un autre
triangle
rectangle ACD, dont le côté CD, ſoit égal à CB, l’hy-
potenuſe
AD, exprimera la baſe AC, du profil triangulaire, &
di-
viſant
cette hypotenuſe en deux également au point E, ſa moitié
AE
, ſera la baſe du paralellograme égal au triangle, ainſi la ſuper-
ficie
du profil rectangle ſurpaſſera autant celle du profil triangulaire,
que
la ligne AC, ſurpaſſe la moitié de la ligne AD, ce que l’on ne
peut
pas exprimer en nombre bien exactement à cauſe des incom-
menſurables
, cependant on peut dire que la maçonnerie du profil
triangulaire
eſt à celle du profil rectangle, à peu-près comme 11.
à 18. ce qui fait voir qu’il y a plus d’un tiers moins dans le pre-
mier
que dans le ſecond.
Il ne faut pas trouver étrange qu’on ſupoſe ici un profil triangu-
laire
, nous ſavons bien qu’on ne fait pas de Mur qui ſoit terminé

Text layer

  • Dictionary

Text normalization

  • Original
  • Regularized
  • Normalized

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index