Theodosius <Bithynius>; Clavius, Christoph
,
Theodosii Tripolitae Sphaericorum libri tres
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of figures
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 240
241 - 270
271 - 300
301 - 330
331 - 360
361 - 372
[out of range]
>
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 240
241 - 270
271 - 300
301 - 330
331 - 360
361 - 372
[out of range]
>
page
|<
<
(397)
of 532
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div1088
"
type
="
section
"
level
="
1
"
n
="
536
">
<
pb
o
="
397
"
file
="
409
"
n
="
409
"
rhead
="
"/>
</
div
>
<
div
xml:id
="
echoid-div1090
"
type
="
section
"
level
="
1
"
n
="
537
">
<
head
xml:id
="
echoid-head572
"
xml:space
="
preserve
">THEOR. 37. PROPOS. 39.</
head
>
<
p
>
<
s
xml:id
="
echoid-s13692
"
xml:space
="
preserve
">ANGVLI ſphærici eandem habẽt rationem,
<
lb
/>
quam eorum arcus.</
s
>
<
s
xml:id
="
echoid-s13693
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s13694
"
xml:space
="
preserve
">SINT duo anguli ſphærici BAC, EDF, quorum arcus BC, EF. </
s
>
<
s
xml:id
="
echoid-s13695
"
xml:space
="
preserve
">Dico
<
lb
/>
ita eſſe angulum A, ad angulum D, vt eſt arcus BC, ad arcum EF. </
s
>
<
s
xml:id
="
echoid-s13696
"
xml:space
="
preserve
">Erunt
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-409-01
"
xlink:href
="
note-409-01a
"
xml:space
="
preserve
">Defin. 6.
<
lb
/>
huius.</
note
>
enim A, D, poli arcuum BC, EF; </
s
>
<
s
xml:id
="
echoid-s13697
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s13698
"
xml:space
="
preserve
">arcus AB, AC, DE, DF, quadrantes.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s13699
"
xml:space
="
preserve
">Productis igitur arcu-
<
lb
/>
<
figure
xlink:label
="
fig-409-01
"
xlink:href
="
fig-409-01a
"
number
="
258
">
<
image
file
="
409-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/YC97H42F/figures/409-01
"/>
</
figure
>
bus BC, EF, ſuman-
<
lb
/>
tur quotcunque arcus
<
lb
/>
BG, GH, arcui BC,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s13700
"
xml:space
="
preserve
">quotcũq; </
s
>
<
s
xml:id
="
echoid-s13701
"
xml:space
="
preserve
">arcus FI,
<
lb
/>
IK, KL, arcui EF,
<
lb
/>
æquales; </
s
>
<
s
xml:id
="
echoid-s13702
"
xml:space
="
preserve
">ac per puncta
<
lb
/>
G, H, I, K, L, & </
s
>
<
s
xml:id
="
echoid-s13703
"
xml:space
="
preserve
">po-
<
lb
/>
los A, D, arcus circu-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-409-02
"
xlink:href
="
note-409-02a
"
xml:space
="
preserve
">20.1 Theod.</
note
>
lorum maximorũ du-
<
lb
/>
cantur AG, AH, DI,
<
lb
/>
DK, DL, qui omnes
<
lb
/>
quadrãtes erunt, nem-
<
lb
/>
pe quadrantibus AB,
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-409-03
"
xlink:href
="
note-409-03a
"
xml:space
="
preserve
">28. tertij.</
note
>
AC, DE, DF, æquales, propterea quòd & </
s
>
<
s
xml:id
="
echoid-s13704
"
xml:space
="
preserve
">rectæ ſubtenſæ AG, AH, DI,
<
lb
/>
DK, DL, rectis ſubtenſis AB, AC, DE, DF, æquales ſunt, ex defin. </
s
>
<
s
xml:id
="
echoid-s13705
"
xml:space
="
preserve
">poli.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s13706
"
xml:space
="
preserve
">Erunt ergo omnes anguli ad A, inter ſe æquales; </
s
>
<
s
xml:id
="
echoid-s13707
"
xml:space
="
preserve
">atque adeò quam multiplex
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-409-04
"
xlink:href
="
note-409-04a
"
xml:space
="
preserve
">18. huius.</
note
>
eſt arcus CH, arcus BC, tam multiplex erit aggregatum omnium angulorũ
<
lb
/>
ad A, anguli BAC: </
s
>
<
s
xml:id
="
echoid-s13708
"
xml:space
="
preserve
">Eademque ratione tam multiplex erit aggregatum om-
<
lb
/>
nium angulorum ad D, anguli EDF, quam multiplex eſt arcus EL, arcus
<
lb
/>
EF. </
s
>
<
s
xml:id
="
echoid-s13709
"
xml:space
="
preserve
">Quoniam verò ſi arcus CH, arcui EL, æqualis fuerit, etiam angulus
<
lb
/>
HAC, angulo EDL, æqualis eſt; </
s
>
<
s
xml:id
="
echoid-s13710
"
xml:space
="
preserve
">ſi autem arcus CH, maior ſuerit arcu EL,
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-409-05
"
xlink:href
="
note-409-05a
"
xml:space
="
preserve
">18. huius.</
note
>
etiam angulus HAC, angulo EDL, maior eſt; </
s
>
<
s
xml:id
="
echoid-s13711
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s13712
"
xml:space
="
preserve
">ſi minor, minor; </
s
>
<
s
xml:id
="
echoid-s13713
"
xml:space
="
preserve
">deficient
<
lb
/>
propterea vnà arcus CH, & </
s
>
<
s
xml:id
="
echoid-s13714
"
xml:space
="
preserve
">angulus HAC, æquè multiplicia primæ magni-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-409-06
"
xlink:href
="
note-409-06a
"
xml:space
="
preserve
">12. huius.</
note
>
tudinis BC, & </
s
>
<
s
xml:id
="
echoid-s13715
"
xml:space
="
preserve
">tertiæ BAC, ab arcu EL, & </
s
>
<
s
xml:id
="
echoid-s13716
"
xml:space
="
preserve
">angulo EDL, æque multiplici-
<
lb
/>
bus ſecundę magnitudinis EF, & </
s
>
<
s
xml:id
="
echoid-s13717
"
xml:space
="
preserve
">quartæ EDF; </
s
>
<
s
xml:id
="
echoid-s13718
"
xml:space
="
preserve
">vel vnà æqualia erunt, vel
<
lb
/>
vnà excedent. </
s
>
<
s
xml:id
="
echoid-s13719
"
xml:space
="
preserve
">Quare quę proportio eſt arcus BC, primæ magnitudinis ad
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-409-07
"
xlink:href
="
note-409-07a
"
xml:space
="
preserve
">Defin. 6.
<
lb
/>
quinti.</
note
>
arcum EF, ſecundam magnitudinem, ea erit anguli BAC, tertiæ magnitu-
<
lb
/>
dinis ad angulum EDF, quartam magnitudinem. </
s
>
<
s
xml:id
="
echoid-s13720
"
xml:space
="
preserve
">Itaque anguli ſphærici
<
lb
/>
eandem habent rationem, quam eorum arcus. </
s
>
<
s
xml:id
="
echoid-s13721
"
xml:space
="
preserve
">Quod erat demouſtrandum.</
s
>
<
s
xml:id
="
echoid-s13722
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div1092
"
type
="
section
"
level
="
1
"
n
="
538
">
<
head
xml:id
="
echoid-head573
"
xml:space
="
preserve
">COROLLARIVM.</
head
>
<
p
>
<
s
xml:id
="
echoid-s13723
"
xml:space
="
preserve
">EX hoc ſequitur, @ta eſſe angulum ſphæricum quemcumque ad quatuor angulos rectos
<
lb
/>
ſphæricos, vt eſt arcus illius anguli ad totam circunferentiam circuli maximi; </
s
>
<
s
xml:id
="
echoid-s13724
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s13725
"
xml:space
="
preserve
">contra.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s13726
"
xml:space
="
preserve
">Cum enim ſit angulus ſphæricus quicunque ad angulum rectum ſphæricum, vt arcus il-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-409-08
"
xlink:href
="
note-409-08a
"
xml:space
="
preserve
">39. huius.</
note
>
lius anguli ad quadrantem, nimirum ad arcum anguli recti, erit quoque idem angulus ad
<
lb
/>
quadruplum anguli recti nempe ad quatuor rectos, vt idem arcus illius anguli ad quadru-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-409-09
"
xlink:href
="
note-409-09a
"
xml:space
="
preserve
">Schol. 4.
<
lb
/>
quinti.</
note
>
plum quadrantis, hoc eſt, ad totam circun ferentiam; </
s
>
<
s
xml:id
="
echoid-s13727
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s13728
"
xml:space
="
preserve
">contra.</
s
>
<
s
xml:id
="
echoid-s13729
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>