Theodosius <Bithynius>; Clavius, Christoph
,
Theodosii Tripolitae Sphaericorum libri tres
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 532
>
251
(239)
252
(240)
253
(241)
254
(242)
255
(243)
256
257
258
(246)
259
(247)
260
(248)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 532
>
page
|<
<
(399)
of 532
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div1094
"
type
="
section
"
level
="
1
"
n
="
539
">
<
p
>
<
s
xml:id
="
echoid-s13754
"
xml:space
="
preserve
">
<
pb
o
="
399
"
file
="
411
"
n
="
411
"
rhead
="
"/>
eirculi AECF, perpendiculares BP, GQ. </
s
>
<
s
xml:id
="
echoid-s13755
"
xml:space
="
preserve
">Et quoniam rectæ BP, GQ, ca-
<
lb
/>
dunt in communes ſectiones circulorum IBK, LGM, cum circulo AECF,
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-411-01
"
xlink:href
="
note-411-01a
"
xml:space
="
preserve
">38. vndec.
<
lb
/>
11. 1. Theod.</
note
>
quem bifariam ſecãtin punctis I, K; </
s
>
<
s
xml:id
="
echoid-s13756
"
xml:space
="
preserve
">L, M, hoc eſt, cadũtin diametros circulorũ
<
lb
/>
maximorum IBK, LGM;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s13757
"
xml:space
="
preserve
">
<
figure
xlink:label
="
fig-411-01
"
xlink:href
="
fig-411-01a
"
number
="
259
">
<
image
file
="
411-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/YC97H42F/figures/411-01
"/>
</
figure
>
(quòd horum circulorum
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-411-02
"
xlink:href
="
note-411-02a
"
xml:space
="
preserve
">15. 1. Theod.</
note
>
plana recta ſint ad planum
<
lb
/>
circuli AECF,) ac proin-
<
lb
/>
de rectos angulos faciunt
<
lb
/>
cum diametris circulorum
<
lb
/>
IBK, LGM, ex defin. </
s
>
<
s
xml:id
="
echoid-s13758
"
xml:space
="
preserve
">3.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s13759
"
xml:space
="
preserve
">lib. </
s
>
<
s
xml:id
="
echoid-s13760
"
xml:space
="
preserve
">11. </
s
>
<
s
xml:id
="
echoid-s13761
"
xml:space
="
preserve
">Eucl. </
s
>
<
s
xml:id
="
echoid-s13762
"
xml:space
="
preserve
">erit quoque
<
lb
/>
tam BP, ſinus rectus arcuũ
<
lb
/>
BI, BK, quam GQ, ſinus
<
lb
/>
rectus arcuum GL, GM,
<
lb
/>
ex definitione ſinus recti. </
s
>
<
s
xml:id
="
echoid-s13763
"
xml:space
="
preserve
">
<
lb
/>
Ducantur in plano circuli
<
lb
/>
AECF, rectæ NP, OQ; </
s
>
<
s
xml:id
="
echoid-s13764
"
xml:space
="
preserve
">
<
lb
/>
eruntq; </
s
>
<
s
xml:id
="
echoid-s13765
"
xml:space
="
preserve
">per defin. </
s
>
<
s
xml:id
="
echoid-s13766
"
xml:space
="
preserve
">3. </
s
>
<
s
xml:id
="
echoid-s13767
"
xml:space
="
preserve
">lib. </
s
>
<
s
xml:id
="
echoid-s13768
"
xml:space
="
preserve
">11. </
s
>
<
s
xml:id
="
echoid-s13769
"
xml:space
="
preserve
">
<
lb
/>
Eucl. </
s
>
<
s
xml:id
="
echoid-s13770
"
xml:space
="
preserve
">anguli P, Q, recti, in
<
lb
/>
triangulis NBP, OGQ. </
s
>
<
s
xml:id
="
echoid-s13771
"
xml:space
="
preserve
">
<
lb
/>
Quia verò tam rectæ BN,
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-411-03
"
xlink:href
="
note-411-03a
"
xml:space
="
preserve
">28. primi.</
note
>
GO, parallelę ſunt, propter
<
lb
/>
angulos rectos ANB, AOG,
<
lb
/>
quam rectæ BP, GQ, cum hæ perpendiculares ſint ad planũ circuli AECF;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s13772
"
xml:space
="
preserve
">
<
note
position
="
right
"
xlink:label
="
note-411-04
"
xlink:href
="
note-411-04a
"
xml:space
="
preserve
">6. vndee.</
note
>
erunt quoque anguli B, G, æquales in eisdem triangulis NBP, OGQ.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s13773
"
xml:space
="
preserve
">
<
note
position
="
right
"
xlink:label
="
note-411-05
"
xlink:href
="
note-411-05a
"
xml:space
="
preserve
">10. vndee.</
note
>
AEquiangula igitur ſunt triangula NBP, OGQ; </
s
>
<
s
xml:id
="
echoid-s13774
"
xml:space
="
preserve
">atque adeò erit, vt NB,
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-411-06
"
xlink:href
="
note-411-06a
"
xml:space
="
preserve
">32. primi.</
note
>
ſinus arcus AB, vel CB, ad BP, ſinum arcus BI, vel BK, ita OG, ſinus ar-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-411-07
"
xlink:href
="
note-411-07a
"
xml:space
="
preserve
">4. ſexti.</
note
>
cus AG, vel CG, ad GQ, ſinum arcus GL, vel GM, quomodocunque ar-
<
lb
/>
cus ſumantur, cum cuilibet ſinui duo arcus ſemicirculũ conficientes reſpon-
<
lb
/>
deant. </
s
>
<
s
xml:id
="
echoid-s13775
"
xml:space
="
preserve
">Hcc eſt, erit, vt ſinus arcus AB, ad ſinum arcus BI, ita ſinus arcus AG,
<
lb
/>
ad ſinum arcus GL. </
s
>
<
s
xml:id
="
echoid-s13776
"
xml:space
="
preserve
">Item vt ſinus arcus AB, ad ſinum arcus BK, ita ſinus ar-
<
lb
/>
cus AG, ad ſinum arcus GM. </
s
>
<
s
xml:id
="
echoid-s13777
"
xml:space
="
preserve
">Item vt ſinus arcus CB, ad ſinum arcus BI, ita
<
lb
/>
ſinus arcus CG, ad ſinum arcus GL. </
s
>
<
s
xml:id
="
echoid-s13778
"
xml:space
="
preserve
">Item vt ſinus arcus CB, ad ſinum arcus
<
lb
/>
BK, ita ſinus arcus CG, ad ſinum arcus GM. </
s
>
<
s
xml:id
="
echoid-s13779
"
xml:space
="
preserve
">Item vt ſinus arcus AB, ad
<
lb
/>
ſinum arcus BI, ita ſinus arcus CG, ad ſinum arcus GM, &</
s
>
<
s
xml:id
="
echoid-s13780
"
xml:space
="
preserve
">c.</
s
>
<
s
xml:id
="
echoid-s13781
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s13782
"
xml:space
="
preserve
">DEINDE ſumatur vnum punctum, puta B, in ſemicirculo ABC, & </
s
>
<
s
xml:id
="
echoid-s13783
"
xml:space
="
preserve
">al-
<
lb
/>
terum, nempe D, in altero ſemicirculo CDA, eiuſdem circuli, ducanturq́ue
<
lb
/>
per puncta B, D, & </
s
>
<
s
xml:id
="
echoid-s13784
"
xml:space
="
preserve
">polum circuli AECF, qui ſit H, duo arcus circulorum
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-411-08
"
xlink:href
="
note-411-08a
"
xml:space
="
preserve
">20. 1 Theod.</
note
>
maximorum IBK, DFS; </
s
>
<
s
xml:id
="
echoid-s13785
"
xml:space
="
preserve
">eruntq́ue anguli recti F, I, S, K. </
s
>
<
s
xml:id
="
echoid-s13786
"
xml:space
="
preserve
">Dico rurſus, vt eſt ſi-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-411-09
"
xlink:href
="
note-411-09a
"
xml:space
="
preserve
">15. 1. Theod.</
note
>
nus arcus AB, vel CB, ad ſinum arcus BI, vel BK, ita eſſe ſinum arcus AD,
<
lb
/>
vel CD, ad ſinum arcus DF, vel arcus, qui cum arcu FD, ſemicirculum per-
<
lb
/>
ficit ã puncto D, vſque ad punctum S, ſemicirculi AEC. </
s
>
<
s
xml:id
="
echoid-s13787
"
xml:space
="
preserve
">Nam arcus ab F, per
<
lb
/>
D, vſque ad S, ſemicirculus eſt, cum circuli AECF, DFS, ſe mutuo bifa-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-411-10
"
xlink:href
="
note-411-10a
"
xml:space
="
preserve
">11. 1. Theod.</
note
>
riam ſecentin F, S. </
s
>
<
s
xml:id
="
echoid-s13788
"
xml:space
="
preserve
">Sumatur enim arcui AD, arcus AG, æqualis, & </
s
>
<
s
xml:id
="
echoid-s13789
"
xml:space
="
preserve
">per G,
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-411-11
"
xlink:href
="
note-411-11a
"
xml:space
="
preserve
">1. huius.</
note
>
& </
s
>
<
s
xml:id
="
echoid-s13790
"
xml:space
="
preserve
">polum circuli AECF, nempe per H, arcus maximi circuli ducatur LGM;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s13791
"
xml:space
="
preserve
">
<
note
position
="
right
"
xlink:label
="
note-411-12
"
xlink:href
="
note-411-12a
"
xml:space
="
preserve
">20. 1 Theod.</
note
>
eruntq́ue anguli L, M, recti. </
s
>
<
s
xml:id
="
echoid-s13792
"
xml:space
="
preserve
">Quoniam igitur duo anguli A, L, trianguli AGL,
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-411-13
"
xlink:href
="
note-411-13a
"
xml:space
="
preserve
">15. 1. Theod.</
note
>
duobus angulis A, F, trianguli ADF, æquales ſunt, (ſunt enim duo anguli
<
lb
/>
A, ad verticem æquales, & </
s
>
<
s
xml:id
="
echoid-s13793
"
xml:space
="
preserve
">anguli L, F, recti.) </
s
>
<
s
xml:id
="
echoid-s13794
"
xml:space
="
preserve
">ſuntq́ue latera AG, AD, rectos
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-411-14
"
xlink:href
="
note-411-14a
"
xml:space
="
preserve
">6. huius.</
note
>
</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>