Gravesande, Willem Jacob 's
,
Physices elementa mathematica, experimentis confirmata sive introductio ad philosophiam Newtonianam; Tom. 1
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 570
571 - 580
581 - 590
591 - 600
601 - 610
611 - 620
621 - 630
631 - 640
641 - 650
651 - 660
661 - 670
671 - 680
681 - 690
691 - 700
701 - 710
711 - 720
721 - 730
731 - 740
741 - 750
751 - 760
761 - 770
771 - 780
781 - 790
791 - 800
801 - 810
811 - 820
821 - 824
>
31
(1)
32
(2)
33
(3)
34
(4)
35
(5)
36
(6)
37
(7)
38
(8)
39
(9)
40
(10)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 570
571 - 580
581 - 590
591 - 600
601 - 610
611 - 620
621 - 630
631 - 640
641 - 650
651 - 660
661 - 670
671 - 680
681 - 690
691 - 700
701 - 710
711 - 720
721 - 730
731 - 740
741 - 750
751 - 760
761 - 770
771 - 780
781 - 790
791 - 800
801 - 810
811 - 820
821 - 824
>
page
|<
<
(12)
of 824
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div76
"
type
="
section
"
level
="
1
"
n
="
33
">
<
pb
o
="
12
"
file
="
0042
"
n
="
42
"
rhead
="
PHYSICES ELEMENTA
"/>
<
p
>
<
s
xml:id
="
echoid-s855
"
xml:space
="
preserve
">Si A ſit infinite magnum reſpectu a, media quæcunque proportionalis b
<
lb
/>
inter has quantitates minor eſt A, & </
s
>
<
s
xml:id
="
echoid-s856
"
xml:space
="
preserve
">major a, non tamen finitam habet rationem
<
lb
/>
ad A aut a; </
s
>
<
s
xml:id
="
echoid-s857
"
xml:space
="
preserve
">ratio enim A ad a componitur ex rationibus A ad b, & </
s
>
<
s
xml:id
="
echoid-s858
"
xml:space
="
preserve
">b ad a, & </
s
>
<
s
xml:id
="
echoid-s859
"
xml:space
="
preserve
">
<
lb
/>
ratio ex duabus finitis rationibus compoſita eſt etiam finita; </
s
>
<
s
xml:id
="
echoid-s860
"
xml:space
="
preserve
">ideo cum A & </
s
>
<
s
xml:id
="
echoid-s861
"
xml:space
="
preserve
">a in
<
lb
/>
infinitum differant, ratio inter A & </
s
>
<
s
xml:id
="
echoid-s862
"
xml:space
="
preserve
">b, aut b & </
s
>
<
s
xml:id
="
echoid-s863
"
xml:space
="
preserve
">a, omnem finitam rationem
<
lb
/>
ſuperat; </
s
>
<
s
xml:id
="
echoid-s864
"
xml:space
="
preserve
">quare etiam infinita eſt. </
s
>
<
s
xml:id
="
echoid-s865
"
xml:space
="
preserve
">In infinitum mediæ proportionales inter
<
lb
/>
duas quantitates dari poſſunt.</
s
>
<
s
xml:id
="
echoid-s866
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div85
"
type
="
section
"
level
="
1
"
n
="
34
">
<
head
xml:id
="
echoid-head71
"
xml:space
="
preserve
">SCHOLIUM 2.</
head
>
<
head
xml:id
="
echoid-head72
"
style
="
it
"
xml:space
="
preserve
">De partium Subtilitate.</
head
>
<
p
>
<
s
xml:id
="
echoid-s867
"
xml:space
="
preserve
">Pondus auri, quo in n°. </
s
>
<
s
xml:id
="
echoid-s868
"
xml:space
="
preserve
">28. </
s
>
<
s
xml:id
="
echoid-s869
"
xml:space
="
preserve
">diximus argentum deaurari, eſt {1/60} ponderis ipſius
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0042-01
"
xlink:href
="
note-0042-01a
"
xml:space
="
preserve
">46.</
note
>
argenti. </
s
>
<
s
xml:id
="
echoid-s870
"
xml:space
="
preserve
">Volumen auri ſe habet ad volumen argenti, quando pondera
<
lb
/>
ſunt æqualia, ut 10 and 19, ergo volumen auri quo argentum obtegitur ad
<
lb
/>
volumen ipſius argenti obtecti, ut 1 ad 114. </
s
>
<
s
xml:id
="
echoid-s871
"
xml:space
="
preserve
">nam 10. </
s
>
<
s
xml:id
="
echoid-s872
"
xml:space
="
preserve
">19:</
s
>
<
s
xml:id
="
echoid-s873
"
xml:space
="
preserve
">:60.</
s
>
<
s
xml:id
="
echoid-s874
"
xml:space
="
preserve
">, 114.</
s
>
<
s
xml:id
="
echoid-s875
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s876
"
xml:space
="
preserve
">Pes cubicus aquæ ponderat libras 63 {1/2} decies gravius eſt argentum; </
s
>
<
s
xml:id
="
echoid-s877
"
xml:space
="
preserve
">ergo
<
lb
/>
pes cubicus argenti libras 635. </
s
>
<
s
xml:id
="
echoid-s878
"
xml:space
="
preserve
">pondo eſt.</
s
>
<
s
xml:id
="
echoid-s879
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s880
"
xml:space
="
preserve
">Cubus eſt ad cylindrum, ejuſdem diametri & </
s
>
<
s
xml:id
="
echoid-s881
"
xml:space
="
preserve
">altitudinis, circiter ut 14 ad
<
lb
/>
11; </
s
>
<
s
xml:id
="
echoid-s882
"
xml:space
="
preserve
">pondus ergo pedis cylindrici argenti eſt librarum 499. </
s
>
<
s
xml:id
="
echoid-s883
"
xml:space
="
preserve
">aut unciarum 7984.</
s
>
<
s
xml:id
="
echoid-s884
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s885
"
xml:space
="
preserve
">Uncia una porrigitur in filum 14000. </
s
>
<
s
xml:id
="
echoid-s886
"
xml:space
="
preserve
">pedum, & </
s
>
<
s
xml:id
="
echoid-s887
"
xml:space
="
preserve
">in pede cylindrico datur
<
lb
/>
filum 111776000. </
s
>
<
s
xml:id
="
echoid-s888
"
xml:space
="
preserve
">pedum, id eſt, tot dantur fila unius pedis.</
s
>
<
s
xml:id
="
echoid-s889
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s890
"
xml:space
="
preserve
">Circulorum ſuperficies ſunt ut quadrata diametrorum, ideo quadratum di-
<
lb
/>
ametri fili ad quadratum unius pedis, ut 1. </
s
>
<
s
xml:id
="
echoid-s891
"
xml:space
="
preserve
">ad 111776000; </
s
>
<
s
xml:id
="
echoid-s892
"
xml:space
="
preserve
">quorum numero-
<
lb
/>
rum radices ſunt 1 & </
s
>
<
s
xml:id
="
echoid-s893
"
xml:space
="
preserve
">10572, in qua ratione ſunt dictæ diametri; </
s
>
<
s
xml:id
="
echoid-s894
"
xml:space
="
preserve
">eſt ergo fili
<
lb
/>
diameter {1/10572} pedis, aut {1/881} pollicis. </
s
>
<
s
xml:id
="
echoid-s895
"
xml:space
="
preserve
">Aurum circumponitur & </
s
>
<
s
xml:id
="
echoid-s896
"
xml:space
="
preserve
">volumen
<
lb
/>
augetur {1/114}, id eſt ſectio circularis fili ea quantitate augetur, quod fiet ſi
<
lb
/>
filo circumponatur lamina, cujus craſſities eſt pars quarta partis {1/114} diame-
<
lb
/>
tri, area enim circuli habetur multiplicando circumferentiam per quartam
<
lb
/>
diametri partem.</
s
>
<
s
xml:id
="
echoid-s897
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s898
"
xml:space
="
preserve
">Eſt ergo auri craſſities {1/456} diametri fili, quæ eſt {1/881} poll. </
s
>
<
s
xml:id
="
echoid-s899
"
xml:space
="
preserve
">ita ut auri
<
lb
/>
craſſities ſit {1/401736} pollicis.</
s
>
<
s
xml:id
="
echoid-s900
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s901
"
xml:space
="
preserve
">Filahæctenuia deaurata, ut filis ſericis circumvolvantur, plana fiunt, quo ſu-
<
lb
/>
perficies ad minimum triplicatur, & </
s
>
<
s
xml:id
="
echoid-s902
"
xml:space
="
preserve
">in eadem ratione craſſities auri minuitur,
<
lb
/>
ita ut ſit {1/1205208}.</
s
>
<
s
xml:id
="
echoid-s903
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s904
"
xml:space
="
preserve
">Non æqualiter in omnibus punctis filum deauratur, & </
s
>
<
s
xml:id
="
echoid-s905
"
xml:space
="
preserve
">auri craſſities in qui-
<
lb
/>
buſdam locis forte duplo minor eſt, quare nihil a vero remotum ponimus,
<
lb
/>
ſi craſſitiem determinemus {1/2000000} pollicis, id eſt milleſima pars pollicis
<
lb
/>
in bis mille partes dividitur.</
s
>
<
s
xml:id
="
echoid-s906
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s907
"
xml:space
="
preserve
">Talis actu datur auri diviſio; </
s
>
<
s
xml:id
="
echoid-s908
"
xml:space
="
preserve
">ideoque particulæ, quæ arte ſeparantur, non
<
lb
/>
majorem diametrum habent, & </
s
>
<
s
xml:id
="
echoid-s909
"
xml:space
="
preserve
">talium partium in ſphæra aurea unius pollicis
<
lb
/>
dantur 8.</
s
>
<
s
xml:id
="
echoid-s910
"
xml:space
="
preserve
">000.</
s
>
<
s
xml:id
="
echoid-s911
"
xml:space
="
preserve
">000.</
s
>
<
s
xml:id
="
echoid-s912
"
xml:space
="
preserve
">000.</
s
>
<
s
xml:id
="
echoid-s913
"
xml:space
="
preserve
">000.</
s
>
<
s
xml:id
="
echoid-s914
"
xml:space
="
preserve
">000.</
s
>
<
s
xml:id
="
echoid-s915
"
xml:space
="
preserve
">000.</
s
>
<
s
xml:id
="
echoid-s916
"
xml:space
="
preserve
">; & </
s
>
<
s
xml:id
="
echoid-s917
"
xml:space
="
preserve
">in arenula minima, cujus nempe
<
lb
/>
diameter eſt pars centeſima pollicis, dantur particulæ 8,000.</
s
>
<
s
xml:id
="
echoid-s918
"
xml:space
="
preserve
">000.</
s
>
<
s
xml:id
="
echoid-s919
"
xml:space
="
preserve
">000.</
s
>
<
s
xml:id
="
echoid-s920
"
xml:space
="
preserve
">000:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s921
"
xml:space
="
preserve
">particula itaque ſe habet ad arenulam, ut hæc ad globum, cujus diameter ſu-
<
lb
/>
peraret 10. </
s
>
<
s
xml:id
="
echoid-s922
"
xml:space
="
preserve
">pedes, & </
s
>
<
s
xml:id
="
echoid-s923
"
xml:space
="
preserve
">non majorem numerum arenularum contineret globus
<
lb
/>
hic, quam particularum continet arenula. </
s
>
<
s
xml:id
="
echoid-s924
"
xml:space
="
preserve
">Globus vero continet 4096. </
s
>
<
s
xml:id
="
echoid-s925
"
xml:space
="
preserve
">
<
lb
/>
globosunius pedis.</
s
>
<
s
xml:id
="
echoid-s926
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>