Valerio, Luca, De centro gravitatis solidorum, 1604

Table of figures

< >
[Figure 11]
[Figure 12]
[Figure 13]
[Figure 14]
[Figure 15]
[Figure 16]
[Figure 17]
[Figure 18]
[Figure 19]
[Figure 20]
[Figure 21]
[Figure 22]
[Figure 23]
[Figure 24]
[Figure 25]
[Figure 26]
[Figure 27]
[Figure 28]
[Figure 29]
[Figure 30]
[Figure 31]
[Figure 32]
[Figure 33]
[Figure 34]
[Figure 35]
[Figure 36]
[Figure 37]
[Figure 38]
[Figure 39]
[Figure 40]
< >
page |< < of 283 > >|
1tatis in puncto B, ſpacia N, R, æquiponderabunt à lon­
gitudinibus AC, CB; eritque vtriuſque plani N, R, ſi­
mul centrum grauitatis C.
Quod demonſtrandum erat.
COROLLARIVM.
Hinc manifeſtum eſt ſi cuiuslibet figuræ pla­
næ vtcumque ſectæ centra grauitatis partium
iungantur recta linea, talem lineam à centro gra­
uitatis totius prædicti plani ita ſecari, vt ſegmen­
ta ex contrario reſpondeant prædictis partibus.
PROPOSITIO XVII.
Si totum quoduis planum, & pars aliqua non
habeant idem centrum grauitatis, & eorum cen­
tra iungantur recta linea; in ea producta ad par­
tes centri grauitatis totius, erit reliquæ partis cen
trum grauitatis.
Sit totum quoduis planum
ABC, cuius centrum graui­
tatis E, & pars illius AB, cuius
aliud centrum D, & iuncta
DE, producatur ad partes E,
in infinitum vſque in H.
Dico
reliquæ partis BC, centrum
grauitatis, quod ſit G, eſse in
linea EH.
Quoniam enim D,
G, ſunt centra grauitatis par­
25[Figure 25]
tium AB, BC, cadet totius ABC, centrum grauitatis

Text layer

  • Dictionary
  • Places

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index