Clavius, Christoph
,
Gnomonices libri octo, in quibus non solum horologiorum solariu[m], sed aliarum quo[quam] rerum, quae ex gnomonis umbra cognosci possunt, descriptiones geometricè demonstrantur
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Figures
Content
Thumbnails
Table of figures
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 240
241 - 270
271 - 300
301 - 330
331 - 360
361 - 390
391 - 420
421 - 432
[out of range]
>
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 240
241 - 270
271 - 300
301 - 330
331 - 360
361 - 390
391 - 420
421 - 432
[out of range]
>
page
|<
<
(425)
of 677
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
it
"
type
="
free
">
<
div
xml:id
="
echoid-div1429
"
type
="
section
"
level
="
1
"
n
="
350
">
<
pb
o
="
425
"
file
="
0441
"
n
="
441
"
rhead
="
LIBER QVARTVS.
"/>
<
p
>
<
s
xml:id
="
echoid-s27866
"
xml:space
="
preserve
">HANC autem conſtructionem hoc modo demonſtrabimus. </
s
>
<
s
xml:id
="
echoid-s27867
"
xml:space
="
preserve
">In plano horologii proprium
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0441-01
"
xlink:href
="
note-0441-01a
"
xml:space
="
preserve
">Demonſtratio
<
lb
/>
deſcriptionis
<
lb
/>
horologii præ-
<
lb
/>
dicti.</
note
>
ſitum habentis intelligatur A B, Horizonti æquidiſtans, ita vt ſit communis ſectio plani horolo-
<
lb
/>
gii, & </
s
>
<
s
xml:id
="
echoid-s27868
"
xml:space
="
preserve
">Horizontis, & </
s
>
<
s
xml:id
="
echoid-s27869
"
xml:space
="
preserve
">triangulum E F ψ, moueri concipiatur circa rectam E ψ, donec cum Hori-
<
lb
/>
zonte coniungatur, in eoque iaceat. </
s
>
<
s
xml:id
="
echoid-s27870
"
xml:space
="
preserve
">Et quoniam D E F, angulus eſt declinationis plani à Vertica-
<
lb
/>
<
figure
xlink:label
="
fig-0441-01
"
xlink:href
="
fig-0441-01a
"
number
="
292
">
<
image
file
="
0441-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/xxxxxxxx/figures/0441-01
"/>
</
figure
>
<
note
position
="
left
"
xlink:label
="
note-0441-02
"
xlink:href
="
note-0441-02a
"
xml:space
="
preserve
">10</
note
>
<
note
position
="
left
"
xlink:label
="
note-0441-03
"
xlink:href
="
note-0441-03a
"
xml:space
="
preserve
">20</
note
>
<
note
position
="
left
"
xlink:label
="
note-0441-04
"
xlink:href
="
note-0441-04a
"
xml:space
="
preserve
">30</
note
>
li, erit reliquus A E F, angulus complementi dictæ declinationis, qualem nimirum facit Meri-
<
lb
/>
dianus cum linea, quæ in plano declinante, & </
s
>
<
s
xml:id
="
echoid-s27871
"
xml:space
="
preserve
">inclinato æquidiſtat Horizonti, vel potius cum pla
<
lb
/>
no per illam rectam ducto, & </
s
>
<
s
xml:id
="
echoid-s27872
"
xml:space
="
preserve
">ad Horizontem recto. </
s
>
<
s
xml:id
="
echoid-s27873
"
xml:space
="
preserve
">Quare E F, in illo ſitu communis ſectio erit
<
lb
/>
Meridiani, & </
s
>
<
s
xml:id
="
echoid-s27874
"
xml:space
="
preserve
">Horizontis. </
s
>
<
s
xml:id
="
echoid-s27875
"
xml:space
="
preserve
">Quia verò in ſphæra recta axis mundi communis ſectio eſt Horizon -
<
lb
/>
tis, ac Meridiani, erit E F, axis mundi occurrens plano horologij in E, puncto, quod centrum erit
<
lb
/>
horologii, in quo omnes horariæ lineæ conueniunt, vt in ſuperioribus demonſtratum eſt.</
s
>
<
s
xml:id
="
echoid-s27876
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s27877
"
xml:space
="
preserve
">RVRSVS triangulo E F ψ, habente illum ſitum, quem diximus, intelligatur circa F ψ, con-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0441-05
"
xlink:href
="
note-0441-05a
"
xml:space
="
preserve
">40</
note
>
uerti triangulum F n ψ, deorſum verſus, donec & </
s
>
<
s
xml:id
="
echoid-s27878
"
xml:space
="
preserve
">ad planum horologii, & </
s
>
<
s
xml:id
="
echoid-s27879
"
xml:space
="
preserve
">ad Horizontem ſit
<
lb
/>
rectum: </
s
>
<
s
xml:id
="
echoid-s27880
"
xml:space
="
preserve
">quod tum demum fiet, cum recta ψ n, perpendicularis fuerit ad A B. </
s
>
<
s
xml:id
="
echoid-s27881
"
xml:space
="
preserve
">Tunc enim recta
<
lb
/>
A B, perpendicularis exiſtens ad rectas ψ F, ψ n, recta erit ad planum trianguli ψ F n, per illas re-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0441-06
"
xlink:href
="
note-0441-06a
"
xml:space
="
preserve
">4. vndec.</
note
>
ctas ductum. </
s
>
<
s
xml:id
="
echoid-s27882
"
xml:space
="
preserve
">Igitur & </
s
>
<
s
xml:id
="
echoid-s27883
"
xml:space
="
preserve
">tam planum horologii, quàm Horizontis, per rectam A B, ductum, ad idẽ
<
lb
/>
planum trianguli ψ F n, rectum erit; </
s
>
<
s
xml:id
="
echoid-s27884
"
xml:space
="
preserve
">ac proinde & </
s
>
<
s
xml:id
="
echoid-s27885
"
xml:space
="
preserve
">viciſſim hoc ad vtrumque illorum rectum exi
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0441-07
"
xlink:href
="
note-0441-07a
"
xml:space
="
preserve
">18. vndec.</
note
>
ſtet. </
s
>
<
s
xml:id
="
echoid-s27886
"
xml:space
="
preserve
">Quocirca cum F ψ n, angulus ſit inclinationis plani ad Horizontem, & </
s
>
<
s
xml:id
="
echoid-s27887
"
xml:space
="
preserve
">per rectam F ψ, in
<
lb
/>
eo ſitu ducatur Horizon, iacebit ψ n, in plano inclinato, coniunctaq́; </
s
>
<
s
xml:id
="
echoid-s27888
"
xml:space
="
preserve
">erit cum recta ψ p, in eodẽ
<
lb
/>
plano exiſtente, atque adeò punctum n, in punctum p, cadet, ob æqualitatem rectarum ψ n, ψ p.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s27889
"
xml:space
="
preserve
">Cum ergo Meridianus rectus exiſtens ad Horizontem, ac idcirco & </
s
>
<
s
xml:id
="
echoid-s27890
"
xml:space
="
preserve
">ad planum trianguli E F ψ,
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0441-08
"
xlink:href
="
note-0441-08a
"
xml:space
="
preserve
">50</
note
>
in plano Horizontis exiſtentis in dicto ſitu, tranſeat per rectam E F, vt demonſtrauimus, ac pro-
<
lb
/>
inde & </
s
>
<
s
xml:id
="
echoid-s27891
"
xml:space
="
preserve
">per rectam F n, in illo ſitu, (propterea quod F n, per defin. </
s
>
<
s
xml:id
="
echoid-s27892
"
xml:space
="
preserve
">4. </
s
>
<
s
xml:id
="
echoid-s27893
"
xml:space
="
preserve
">lib. </
s
>
<
s
xml:id
="
echoid-s27894
"
xml:space
="
preserve
">11. </
s
>
<
s
xml:id
="
echoid-s27895
"
xml:space
="
preserve
">Euclidis recta eſt ad
<
lb
/>
planum trianguli E F ψ, cum perpendicularis ſit, ex conſtructione, ad F ψ, cõmunem ſectione m
<
lb
/>
triangulorum E F ψ, ψ F n, quorum vnum ad alterum rectum eſt) occurret Meridianus plano
<
lb
/>
horologii inclinati in puncto p; </
s
>
<
s
xml:id
="
echoid-s27896
"
xml:space
="
preserve
">ac proinde recta E p, communis ſectio erit Meridiani, ac plani
<
lb
/>
horologii inclinati. </
s
>
<
s
xml:id
="
echoid-s27897
"
xml:space
="
preserve
">Hanc autem eandem meridianam lineam inueniemus etiam alio modo, vt
<
lb
/>
ad principium propoſ. </
s
>
<
s
xml:id
="
echoid-s27898
"
xml:space
="
preserve
">37. </
s
>
<
s
xml:id
="
echoid-s27899
"
xml:space
="
preserve
">ſuperioris libri docuimus.</
s
>
<
s
xml:id
="
echoid-s27900
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s27901
"
xml:space
="
preserve
">QVONIAM autem, triangulis E F ψ, ψ F n, in iiſdem poſitionibus adhuc conſtitutis, re-
<
lb
/>
cta F G, ad ψ n, cõmunem ſectionem plani horologii, & </
s
>
<
s
xml:id
="
echoid-s27902
"
xml:space
="
preserve
">trianguli F n ψ, ad horologii planum re
<
lb
/>
cti exiſtentis, perpendicularis eſt, exiſtitq́ue in plano trianguli F n ψ, erit per deſin. </
s
>
<
s
xml:id
="
echoid-s27903
"
xml:space
="
preserve
">4. </
s
>
<
s
xml:id
="
echoid-s27904
"
xml:space
="
preserve
">lib. </
s
>
<
s
xml:id
="
echoid-s27905
"
xml:space
="
preserve
">11. </
s
>
<
s
xml:id
="
echoid-s27906
"
xml:space
="
preserve
">Eucl.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s27907
"
xml:space
="
preserve
">@adem F G, ad planum hologii recta in puncto G, quod idem tunc eſt, quod H. </
s
>
<
s
xml:id
="
echoid-s27908
"
xml:space
="
preserve
">Cum ergo </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>