Clavius, Christoph, Gnomonices libri octo, in quibus non solum horologiorum solariu[m], sed aliarum quo[quam] rerum, quae ex gnomonis umbra cognosci possunt, descriptiones geometricè demonstrantur

Table of figures

< >
< >
page |< < (425) of 677 > >|
    <echo version="1.0RC">
      <text xml:lang="it" type="free">
        <div xml:id="echoid-div1429" type="section" level="1" n="350">
          <pb o="425" file="0441" n="441" rhead="LIBER QVARTVS."/>
          <p>
            <s xml:id="echoid-s27866" xml:space="preserve">HANC autem conſtructionem hoc modo demonſtrabimus. </s>
            <s xml:id="echoid-s27867" xml:space="preserve">In plano horologii proprium
              <lb/>
              <note position="right" xlink:label="note-0441-01" xlink:href="note-0441-01a" xml:space="preserve">Demonſtratio
                <lb/>
              deſcriptionis
                <lb/>
              horologii præ-
                <lb/>
              dicti.</note>
            ſitum habentis intelligatur A B, Horizonti æquidiſtans, ita vt ſit communis ſectio plani horolo-
              <lb/>
            gii, & </s>
            <s xml:id="echoid-s27868" xml:space="preserve">Horizontis, & </s>
            <s xml:id="echoid-s27869" xml:space="preserve">triangulum E F ψ, moueri concipiatur circa rectam E ψ, donec cum Hori-
              <lb/>
            zonte coniungatur, in eoque iaceat. </s>
            <s xml:id="echoid-s27870" xml:space="preserve">Et quoniam D E F, angulus eſt declinationis plani à Vertica-
              <lb/>
              <figure xlink:label="fig-0441-01" xlink:href="fig-0441-01a" number="292">
                <image file="0441-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/xxxxxxxx/figures/0441-01"/>
              </figure>
              <note position="left" xlink:label="note-0441-02" xlink:href="note-0441-02a" xml:space="preserve">10</note>
              <note position="left" xlink:label="note-0441-03" xlink:href="note-0441-03a" xml:space="preserve">20</note>
              <note position="left" xlink:label="note-0441-04" xlink:href="note-0441-04a" xml:space="preserve">30</note>
            li, erit reliquus A E F, angulus complementi dictæ declinationis, qualem nimirum facit Meri-
              <lb/>
            dianus cum linea, quæ in plano declinante, & </s>
            <s xml:id="echoid-s27871" xml:space="preserve">inclinato æquidiſtat Horizonti, vel potius cum pla
              <lb/>
            no per illam rectam ducto, & </s>
            <s xml:id="echoid-s27872" xml:space="preserve">ad Horizontem recto. </s>
            <s xml:id="echoid-s27873" xml:space="preserve">Quare E F, in illo ſitu communis ſectio erit
              <lb/>
            Meridiani, & </s>
            <s xml:id="echoid-s27874" xml:space="preserve">Horizontis. </s>
            <s xml:id="echoid-s27875" xml:space="preserve">Quia verò in ſphæra recta axis mundi communis ſectio eſt Horizon -
              <lb/>
            tis, ac Meridiani, erit E F, axis mundi occurrens plano horologij in E, puncto, quod centrum erit
              <lb/>
            horologii, in quo omnes horariæ lineæ conueniunt, vt in ſuperioribus demonſtratum eſt.</s>
            <s xml:id="echoid-s27876" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s27877" xml:space="preserve">RVRSVS triangulo E F ψ, habente illum ſitum, quem diximus, intelligatur circa F ψ, con-
              <lb/>
              <note position="left" xlink:label="note-0441-05" xlink:href="note-0441-05a" xml:space="preserve">40</note>
            uerti triangulum F n ψ, deorſum verſus, donec & </s>
            <s xml:id="echoid-s27878" xml:space="preserve">ad planum horologii, & </s>
            <s xml:id="echoid-s27879" xml:space="preserve">ad Horizontem ſit
              <lb/>
            rectum: </s>
            <s xml:id="echoid-s27880" xml:space="preserve">quod tum demum fiet, cum recta ψ n, perpendicularis fuerit ad A B. </s>
            <s xml:id="echoid-s27881" xml:space="preserve">Tunc enim recta
              <lb/>
            A B, perpendicularis exiſtens ad rectas ψ F, ψ n, recta erit ad planum trianguli ψ F n, per illas re-
              <lb/>
              <note position="right" xlink:label="note-0441-06" xlink:href="note-0441-06a" xml:space="preserve">4. vndec.</note>
            ctas ductum. </s>
            <s xml:id="echoid-s27882" xml:space="preserve">Igitur & </s>
            <s xml:id="echoid-s27883" xml:space="preserve">tam planum horologii, quàm Horizontis, per rectam A B, ductum, ad idẽ
              <lb/>
            planum trianguli ψ F n, rectum erit; </s>
            <s xml:id="echoid-s27884" xml:space="preserve">ac proinde & </s>
            <s xml:id="echoid-s27885" xml:space="preserve">viciſſim hoc ad vtrumque illorum rectum exi
              <lb/>
              <note position="right" xlink:label="note-0441-07" xlink:href="note-0441-07a" xml:space="preserve">18. vndec.</note>
            ſtet. </s>
            <s xml:id="echoid-s27886" xml:space="preserve">Quocirca cum F ψ n, angulus ſit inclinationis plani ad Horizontem, & </s>
            <s xml:id="echoid-s27887" xml:space="preserve">per rectam F ψ, in
              <lb/>
            eo ſitu ducatur Horizon, iacebit ψ n, in plano inclinato, coniunctaq́; </s>
            <s xml:id="echoid-s27888" xml:space="preserve">erit cum recta ψ p, in eodẽ
              <lb/>
            plano exiſtente, atque adeò punctum n, in punctum p, cadet, ob æqualitatem rectarum ψ n, ψ p.
              <lb/>
            </s>
            <s xml:id="echoid-s27889" xml:space="preserve">Cum ergo Meridianus rectus exiſtens ad Horizontem, ac idcirco & </s>
            <s xml:id="echoid-s27890" xml:space="preserve">ad planum trianguli E F ψ,
              <lb/>
              <note position="left" xlink:label="note-0441-08" xlink:href="note-0441-08a" xml:space="preserve">50</note>
            in plano Horizontis exiſtentis in dicto ſitu, tranſeat per rectam E F, vt demonſtrauimus, ac pro-
              <lb/>
            inde & </s>
            <s xml:id="echoid-s27891" xml:space="preserve">per rectam F n, in illo ſitu, (propterea quod F n, per defin. </s>
            <s xml:id="echoid-s27892" xml:space="preserve">4. </s>
            <s xml:id="echoid-s27893" xml:space="preserve">lib. </s>
            <s xml:id="echoid-s27894" xml:space="preserve">11. </s>
            <s xml:id="echoid-s27895" xml:space="preserve">Euclidis recta eſt ad
              <lb/>
            planum trianguli E F ψ, cum perpendicularis ſit, ex conſtructione, ad F ψ, cõmunem ſectione m
              <lb/>
            triangulorum E F ψ, ψ F n, quorum vnum ad alterum rectum eſt) occurret Meridianus plano
              <lb/>
            horologii inclinati in puncto p; </s>
            <s xml:id="echoid-s27896" xml:space="preserve">ac proinde recta E p, communis ſectio erit Meridiani, ac plani
              <lb/>
            horologii inclinati. </s>
            <s xml:id="echoid-s27897" xml:space="preserve">Hanc autem eandem meridianam lineam inueniemus etiam alio modo, vt
              <lb/>
            ad principium propoſ. </s>
            <s xml:id="echoid-s27898" xml:space="preserve">37. </s>
            <s xml:id="echoid-s27899" xml:space="preserve">ſuperioris libri docuimus.</s>
            <s xml:id="echoid-s27900" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s27901" xml:space="preserve">QVONIAM autem, triangulis E F ψ, ψ F n, in iiſdem poſitionibus adhuc conſtitutis, re-
              <lb/>
            cta F G, ad ψ n, cõmunem ſectionem plani horologii, & </s>
            <s xml:id="echoid-s27902" xml:space="preserve">trianguli F n ψ, ad horologii planum re
              <lb/>
            cti exiſtentis, perpendicularis eſt, exiſtitq́ue in plano trianguli F n ψ, erit per deſin. </s>
            <s xml:id="echoid-s27903" xml:space="preserve">4. </s>
            <s xml:id="echoid-s27904" xml:space="preserve">lib. </s>
            <s xml:id="echoid-s27905" xml:space="preserve">11. </s>
            <s xml:id="echoid-s27906" xml:space="preserve">Eucl.
              <lb/>
            </s>
            <s xml:id="echoid-s27907" xml:space="preserve">@adem F G, ad planum hologii recta in puncto G, quod idem tunc eſt, quod H. </s>
            <s xml:id="echoid-s27908" xml:space="preserve">Cum ergo </s>
          </p>
        </div>
      </text>
    </echo>