Valerio, Luca, De centro gravitatis solidorvm libri tres

Page concordance

< >
Scan Original
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
< >
page |< < of 283 > >|
    <archimedes>
      <text>
        <body>
          <chap>
            <p type="main">
              <s>
                <pb xlink:href="043/01/045.jpg" pagenum="37"/>
              trum grauitatis. </s>
              <s>Si enim non eſt, erit aliud, eſto G: &
                <lb/>
              iunctatur EG, producatur ad partes G, in infinitum vſ­
                <lb/>
              que ìn F. </s>
              <s>Quoniam igitur E, eſt centrum grauitatis vnius
                <lb/>
              partis AC, & G, totius AB; erit reliquæ partis CD, in
                <lb/>
              linea GF centrum grauitatis: ſed & in puncto E; eiuſ­
                <lb/>
              dem igitur magnitudinis AB, duo centra grauitatis erunt.
                <lb/>
              </s>
              <s>Quod fieri non poteſt; totius igitur AB, erit centrum gra
                <lb/>
              uitatis idem E. </s>
              <s>Manifeſtum eſt igitur propoſitum. </s>
            </p>
            <p type="head">
              <s>
                <emph type="italics"/>
              PROPOSITIO XIX.
                <emph.end type="italics"/>
              </s>
            </p>
            <p type="main">
              <s>Omnis trianguli rectilinei idem eſt centrum
                <lb/>
              grauitatis, & figuræ. </s>
            </p>
            <p type="main">
              <s>Sit triangulum rectilineum ABC, cuius centrum G.
                <lb/>
              </s>
              <s>Dico G, eſse centrum grauitatis trianguli ABC. </s>
              <s>Si enim
                <lb/>
              fieri poteſt, ſit aliud punctum N, centrum grauitatis trian
                <lb/>
              guli ABC, & per punctum G, ducantur rectæ AF, BD,
                <lb/>
              CE, & DHE, ERF, FKD,
                <emph type="italics"/>
              K
                <emph.end type="italics"/>
              LH, & NG. </s>
              <s>Quo­
                <lb/>
              niam igitur quæ ab angulis A, B, C, ductæ ſunt rectæ
                <lb/>
              lineæ per G, ſecant bifariam latera AB, BC, CA; erit
                <lb/>
              triangulum EDF, ſimile triangulo ABC, ob latera pa­
                <lb/>
              rallela vt ſunt EF, AC. </s>
              <s>Et quoniam triangulum EDF,
                <lb/>
              dimidium eſt cuius vis trium parallelogrammorum AF,
                <lb/>
              BD, CE, æqualia inter ſe erunt ea parallelogramma
                <lb/>
              omnifariam ſumpta, quorum centra grauitatis H, K, R;
                <lb/>
              intelligantur autem tria parallelogramma AF, BD, CE,
                <lb/>
              diſtincta penitus, ita vt inter ſe congruant ſecundum tria
                <lb/>
              triangula DEF, inter ſe congruentia: trium igitur trian
                <lb/>
              gulorum DEF, inter ſe congruentium & centra grauita­
                <lb/>
              tis inter ſe congruent in puncto M. </s>
              <s>Quoniam igitur in­
                <lb/>
              ter duas parallelas EF, KH, ſecant ſe rectæ lineæ FH,
                <lb/>
              LR, in puncto G; erit vt FG, ad GH, ita RG, ad GL; </s>
            </p>
          </chap>
        </body>
      </text>
    </archimedes>