Theodosius <Bithynius>; Clavius, Christoph
,
Theodosii Tripolitae Sphaericorum libri tres
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of figures
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 240
241 - 270
271 - 300
301 - 330
331 - 360
361 - 372
[out of range]
>
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 240
241 - 270
271 - 300
301 - 330
331 - 360
361 - 372
[out of range]
>
page
|<
<
(454)
of 532
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div1288
"
type
="
section
"
level
="
1
"
n
="
599
">
<
pb
o
="
454
"
file
="
466
"
n
="
466
"
rhead
="
"/>
</
div
>
<
div
xml:id
="
echoid-div1291
"
type
="
section
"
level
="
1
"
n
="
600
">
<
head
xml:id
="
echoid-head635
"
xml:space
="
preserve
">SCHOLIVM. II.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s16091
"
xml:space
="
preserve
">CATERVM ex hac propoſ. </
s
>
<
s
xml:id
="
echoid-s16092
"
xml:space
="
preserve
">58. </
s
>
<
s
xml:id
="
echoid-s16093
"
xml:space
="
preserve
">colligemus ſequens theorema ad calculum trian
<
lb
/>
gulorum ſphæricorum non rectangulorum perutile, videlicet.</
s
>
<
s
xml:id
="
echoid-s16094
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s16095
"
xml:space
="
preserve
">IN omni triangulo ſphærico, cuius duo arcus ſint inæquales: </
s
>
<
s
xml:id
="
echoid-s16096
"
xml:space
="
preserve
">ſi-
<
lb
/>
nus totus ad quantitatem, quæ ſinui toti, & </
s
>
<
s
xml:id
="
echoid-s16097
"
xml:space
="
preserve
">duobus ſinubus arcuum
<
lb
/>
inæqualium quarto loco proportionalis eſt, eandem proportionem
<
lb
/>
habet, quam ſinus verſus anguli ſub dictis arcubus comprehenſi ad
<
lb
/>
differentiam inter ſinum verſum reliqui tertij arcus, & </
s
>
<
s
xml:id
="
echoid-s16098
"
xml:space
="
preserve
">ſinum ver-
<
lb
/>
ſum arcus, quo duo inæquales arcus inter ſe differunt.</
s
>
<
s
xml:id
="
echoid-s16099
"
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s16100
"
xml:space
="
preserve
">IN triangulo ſphærico ABC, proxime antecedenti
<
lb
/>
<
figure
xlink:label
="
fig-466-01
"
xlink:href
="
fig-466-01a
"
number
="
334
">
<
image
file
="
466-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/YC97H42F/figures/466-01
"/>
</
figure
>
ſit arcus AB, maior arcu AC, & </
s
>
<
s
xml:id
="
echoid-s16101
"
xml:space
="
preserve
">ex polo A, ad interual
<
lb
/>
lum AC, deſcribatur arcus circuli CD, vt arcus AC,
<
lb
/>
AD, per defin. </
s
>
<
s
xml:id
="
echoid-s16102
"
xml:space
="
preserve
">poli, ſint æquales, atque adeo arcus BD,
<
lb
/>
exceſſus ſit, ſeu differentia arcuum AB, AC. </
s
>
<
s
xml:id
="
echoid-s16103
"
xml:space
="
preserve
">Fiat iam,
<
lb
/>
vt ſinus totus ad ſinum arcus AB, ita ſinus arcus AC, ad
<
lb
/>
aliud, quod quantitas quarta proportionalis vocetur,
<
lb
/>
vt hic vides:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s16104
"
xml:space
="
preserve
">
<
note
position
="
right
"
xlink:label
="
note-466-01
"
xlink:href
="
note-466-01a
"
xml:space
="
preserve
">
<
lb
/>
Sinus \ṫotus. # ſinus arcus \\ AB. # ſinus arcus \\ AC. # quantitas quarta \ṗroportionalis.
<
lb
/>
</
note
>
Dico ita eſſe ſinum totum ad quantitatem quartam ſinui toti, & </
s
>
<
s
xml:id
="
echoid-s16105
"
xml:space
="
preserve
">duobus ſinubus ar-
<
lb
/>
cuum inæqualium proportionalem, vt eſt ſinus verſus anguli A, ad differentiam inter
<
lb
/>
ſinum verſum arcus BC, & </
s
>
<
s
xml:id
="
echoid-s16106
"
xml:space
="
preserve
">ſinum verſum arcus BD, quo inter ſe arcus
<
emph
style
="
sc
">AB</
emph
>
,
<
emph
style
="
sc
">Ac</
emph
>
,
<
lb
/>
differunt. </
s
>
<
s
xml:id
="
echoid-s16107
"
xml:space
="
preserve
">Quoiniam enim proportio ſinus totius ad quantitatem illam quartam pro-
<
lb
/>
portionalem componitur (poſito ſinu arcus AB, medio) ex proportione ſinus totius ad
<
lb
/>
ſinum arcus AB, & </
s
>
<
s
xml:id
="
echoid-s16108
"
xml:space
="
preserve
">ex proportione ſinus arcus AB, ad quantitatem quartam pro-
<
lb
/>
portionalem: </
s
>
<
s
xml:id
="
echoid-s16109
"
xml:space
="
preserve
">Et proportio quadrati ſinus totius ad rectangulum ſub ſinubus rectis ar-
<
lb
/>
cuum AB, AC, componitur ex eiſdem proportionibus, nempe ex proportione ſinus to
<
lb
/>
tius ad ſinum arcus AB, & </
s
>
<
s
xml:id
="
echoid-s16110
"
xml:space
="
preserve
">ex proportione ſinus totius ad ſinum arcus AC, quæ ea-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-466-02
"
xlink:href
="
note-466-02a
"
xml:space
="
preserve
">23. ſexti.</
note
>
dem eſt, quæ proportio ſinus arcus AB, ad quantitatem quartam proportionalem:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s16111
"
xml:space
="
preserve
">(Nam cum ſit, vt ſinus totus ad ſinum arcus
<
emph
style
="
sc
">A</
emph
>
B, ita ſinus arcus AC, ad quantita-
<
lb
/>
tem quartam proportionalem; </
s
>
<
s
xml:id
="
echoid-s16112
"
xml:space
="
preserve
">erit permutando, vt ſinus totus ad ſinum arcus AC,
<
lb
/>
ita ſinus arcus AB, ad quantitatem quartam proportionalem.) </
s
>
<
s
xml:id
="
echoid-s16113
"
xml:space
="
preserve
">erit, vt ſinus totus
<
lb
/>
ad quantitatem quartam proportionalem, ita quadratum ſinus totius ad rectangu-
<
lb
/>
lum ſub ſinubus arcuum AB, AC, contentum. </
s
>
<
s
xml:id
="
echoid-s16114
"
xml:space
="
preserve
">Cum ergo ſit, vt quadratum ſinus to-
<
lb
/>
tius ad rectangulum ſub ſinubus arcuum AB, AC, ita ſinus verſus anguli A, ad dif-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-466-03
"
xlink:href
="
note-466-03a
"
xml:space
="
preserve
">38. huius.</
note
>
ferentiam ſinuum verſorum arcuum BC, BD; </
s
>
<
s
xml:id
="
echoid-s16115
"
xml:space
="
preserve
">erit quoque, vt ſinus totus ad quan-
<
lb
/>
titatem quartam proportionalem, ita ſinus verſus anguli A, ad differentiam inter ſi-
<
lb
/>
nus verſos arcuum BC, BD. </
s
>
<
s
xml:id
="
echoid-s16116
"
xml:space
="
preserve
">quod eſt propoſitum,</
s
>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div1293
"
type
="
section
"
level
="
1
"
n
="
601
">
<
head
xml:id
="
echoid-head636
"
xml:space
="
preserve
">THEOR. 57. PROPOS. 59.</
head
>
<
p
>
<
s
xml:id
="
echoid-s16117
"
xml:space
="
preserve
">SI duo triangula ſphærica duos angulos duo-
<
lb
/>
bus angulis æquales habeant, vtrumque vtrique:</
s
>
<
s
xml:id
="
echoid-s16118
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>