Huygens, Christiaan, Christiani Hugenii opera varia; Bd. 2: Opera geometrica. Opera astronomica. Varia de optica

Table of figures

< >
[11] Fig. 7.E S D P B
[12] Pag. 326.TAB. XXXV.Fig. 1.N H T Z Ψ G K X S Σ Α E Ξ Y F O L B Δ R P V C Q Ω D M
[13] Fig. 5.B L A C D F M G K E H
[14] Fig. 4.B L A C D F M G K H E
[15] Fig. 2.B Δ P R V C Q Ω D A L F O Y Ξ Α Σ X S G K Ψ Z T H E N M
[16] Fig. 3.B Δ P R V A D Ω Q C L F O Y Ξ Α Σ X S G K E Ψ Z T H E N M
[17] Pag. 328.Fig. 2.B L F A D C H E
[18] Fig. 1.B L F A D C H E
[19] Fig. 3.B E A D C
[20] Fig. 4.Q B H A F C E G R D K
[21] Fig. 5.B E D A C G F
[Figure 22]
[23] Pag. 340.TAB. XXXVII.Fig. 1.C G H F E DH A X Q Y T N V B G
[24] Fig. 3.γ A F D X B P N V E Q C
[25] Fig. 2.K C Δ R Θ Z O Γ D I
[26] Fig. 4.A B D C Π Φ N E S P F
[27] Fig. 2.M E Ψ Λ Φ S Ξ Π Ρ Σ Ω F L
[28] Fig. 5.K B Δ E Z A C R O D Θ Γ I
[Figure 29]
[Figure 30]
[Figure 31]
[32] Pag. 366.TAB.XXXVIII.Fig. 1.B E F G A D C
[33] Fig. 2.E F G B A C
[34] Fig. 3.B E D C A F
[35] Fig. 4.D G E F I B K M N H L A C
[36] Fig. 5.HD A B C
[37] Fig. 6.E D C B F G A
[38] Fig. 8.D E G B A F C
[39] Fig. 7.N G H I KE L M A P C O F B D
[40] Pag. 376.TAB. XXXIXFig. 1.E K C B A L H G D F
< >
page |< < (338) of 568 > >|
47338ΕΞΕΤΑΣΙΣ CYCLOM. tro Π P. Ducto deinde plano per A Π P, & alio huic pa-
rallelo D Φ S ſecundum lineam Φ S, erit jam pars ungulæ
hiſce duobus planis terminata, æqualis ſolido quod fit ex du-
ctu plani S Φ Π P in ſe ipſum;
& pars ungulæ E D S Φ, æ-
qualis ei ſolido quod fit ex ductu plani E Φ S in ſe ipſum.
Quare nunc demonſtrandum erit duntaxat, partem E D S Φ
eſſe ad partem Φ A P ut 53 ad 203, Sit Φ N parallela E P,
&
N C parallela Π A. Ergo quoniam ex proprietate Para-
boles, P N eſt {3/4} Π P, erit quoque P C {3/4} A P.
Verùm &
S D æquatur {3/4} A P, quum ſit huic parallela , ſitque 1111. 16.
Elem.
rabola E A F:
Itaque junctâ C D, ea parallela & æqualis
erit lineis P S, N Φ.
Ducatur ſecundùm D C planum
D B C parallelum baſi E Π F, fietque ſemiparabola B D C
æqualis &
ſimilis ſemiparabolæ Π Φ N; & erit Φ B N di-
midius cylindrus parabolicus:
D A C B verò dimidiata un-
gula.
Hæc autem æquatur ſicut antea oſtendimus, duabus
quintis cylindri dimidiati, baſin habentis D B C &
altitudi-
nem B A.
Ergo quum ſemicylindrus Φ B N habeat altitu-
dinem B Π triplam ipſius B A, erit ungula dimid.
D A C B
ad ſemicyl.
Φ B N, ut 2 ad 15, hoc eſt, ut 8 ad 60.
Junctâ porro Φ Π, conſtat ſemiparabolam Π Φ N ad trian-
gulum Π Φ N eſſe ut 4 ad@ 3;
ſed triangulus Π Φ N eſt ad
rectangulum Φ P ut 1 ad 6, (eſt enim baſis Π N tertia pars
ipſius N P) hoc eſt, ut 3 ad 18.
Ergo ex æquo erit ſemi-
parab.
Π Φ N ad rectang. Φ P ut 4 ad 18. Itaque & ſemi-
cylindrus Φ B N eſt ad parallelepipedum ejuſdem altitudinis
ſuper baſi Φ P, ut 4 ad 18.
Dictiautem parallelepipedi di-
midium eſt priſma D N S;
ergo ſemicylindrus Φ B N eſt ad
priſma D N S, ut 4 ad 9, hoc eſt, ut 60 ut 135.
Qua-
lium igitur partium dimidiata ungula D A C B erat 8, ta-
lium ſemicylindrus parab.
Φ B N erat 60, (ut ſuprà oſten-
ſum eſt) taliumque priſma D N S erit 135.
Ac proinde ſo-
lidum A Π S D, quod ex iſtis tribus componitur, erit 203.
Eſt autem ungula dimidiata A D C B ad dimidiatam un-
gulam E A P Π, ut 1 ad 32, ſicut Cl.
Vir. demonſtravit in
prop.
95. lib. 9. Ergo qualium partium ungula dimid.

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index