Alvarus, Thomas
,
Liber de triplici motu
,
1509
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Figures
Content
Thumbnails
Table of Notes
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 191
>
[Note]
Page: 41
[Note]
Page: 41
[Note]
Page: 41
[Note]
Page: 41
[Note]
Page: 41
[Note]
Page: 41
[Note]
Page: 41
[Note]
Page: 42
[Note]
Page: 42
[Note]
Page: 43
[Note]
Page: 43
[Note]
Page: 43
[Note]
Page: 43
[Note]
Page: 44
[Note]
Page: 44
[Note]
Page: 44
[Note]
Page: 45
[Note]
Page: 45
[Note]
Page: 45
[Note]
Page: 45
[Note]
Page: 46
[Note]
Page: 46
[Note]
Page: 46
[Note]
Page: 47
[Note]
Page: 47
[Note]
Page: 47
[Note]
Page: 47
[Note]
Page: 47
[Note]
Page: 48
[Note]
Page: 48
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 191
>
page
|<
<
of 290
>
>|
<
echo
version
="
1.0
">
<
text
xml:lang
="
la
">
<
div
xml:id
="
N10132
"
level
="
1
"
n
="
1
"
type
="
body
">
<
div
xml:id
="
N1194D
"
level
="
2
"
n
="
2
"
type
="
other
"
type-free
="
pars
">
<
div
xml:id
="
N140E1
"
level
="
3
"
n
="
6
"
type
="
chapter
"
type-free
="
capitulum
">
<
p
xml:id
="
N1484D
">
<
s
xml:id
="
N148E4
"
xml:space
="
preserve
">
<
pb
chead
="
Secūde partis
"
file
="
0047
"
n
="
47
"/>
nominatnr data ꝓportio multiplex: et ſi ſic iã in-
<
lb
/>
ter terminos eius computatis extremis reperiren
<
lb
/>
tur tot numeri continuo ꝓportionabiles quotus
<
lb
/>
eſt numerus a quo denominatur dicta proportio
<
lb
/>
multiplex: puta quoties a. cõtinet b. vno plus. </
s
>
<
s
xml:id
="
N148FE
"
xml:space
="
preserve
">igi
<
lb
/>
tur ex oppoſito: ſi non reperiantur tot numeri cõ-
<
lb
/>
putatis extremis iam a. non ſe habet in tali ꝓpor
<
lb
/>
tione multiplici ad b. ꝓportionem rationalem.</
s
>
</
p
>
<
note
position
="
left
"
xml:id
="
N14907
"
xml:space
="
preserve
">nota.</
note
>
<
p
xml:id
="
N1490B
">
<
s
xml:id
="
N1490C
"
xml:space
="
preserve
">¶ Utrum autē inter aliquos numeros date ꝓpor
<
lb
/>
tionis a. reperiantur tot numeri continuo ꝓpor-
<
lb
/>
tionabiles computatis extremis vno plus quotꝰ
<
lb
/>
eſt numerus a quo denominatur proportio multi
<
lb
/>
plex in qua ponitur a. ſe habere ad b. videndū eſt
<
lb
/>
vtrum inter primos numeros eius inueniant̄̄ tot
<
lb
/>
numeri continuo proportionabiles: et ſi ſic conclu
<
lb
/>
das / inter numeros ipſius a. reperiuntur tot nu
<
lb
/>
meri continuo ꝓportionabiles: et ſi non inuenian
<
lb
/>
tur tot inter primos numeros date ꝓportionis:
<
lb
/>
dicas / inter nullos numeros eius reperiunt̄̄ tot
<
lb
/>
numeri continuo ꝓportinoabiles computatis ex
<
lb
/>
tremis. </
s
>
<
s
xml:id
="
N14927
"
xml:space
="
preserve
">Patet hec conſequentia / et deductio tota
<
lb
/>
ex octaua ꝓpoſitione octaui elementorum eucli-
<
lb
/>
dis in qua habetur / ſi inter duos numeros ceci-
<
lb
/>
derint aliqui numeri continuo ꝓportionabiles:
<
lb
/>
inter quoſcun duos in eadem ꝓportione ſe ha-
<
lb
/>
bentes cadent tot numeri continuo ꝓportionabi
<
lb
/>
les eadem ꝓportione qua ꝓportionautur alii. </
s
>
<
s
xml:id
="
N14936
"
xml:space
="
preserve
">ex
<
lb
/>
qua immediate infertur / ſi inter duos numeros
<
lb
/>
ſe habentes in ꝓportio a. ceciderint aliqui nume-
<
lb
/>
ri continuo ꝓportionabiles ꝓportiõe que eſt vna
<
lb
/>
tertia: aut vna quarta: aut vna quinta: ipſius a. in
<
lb
/>
ter primos numeros ipſius a. tot numeri cadēt ꝓ
<
lb
/>
portionabiles eadeꝫ ꝓportione que ſit tertia aut
<
lb
/>
quarta: aut quinta ipſius a. / igitur ex oppoſito cõ
<
lb
/>
ſequentis ſi inter primos numeros a. proportio-
<
lb
/>
nis non reperiantur aliqui numeri continuo pro
<
lb
/>
portionabiles ꝓportione que eſt vna tertia: vna
<
lb
/>
quarta: quinta: ipſius a. et c. nec inter aliquos nūe
<
lb
/>
ros ipſius a. reperientur: quod fuit oſtendendum:
<
lb
/>
</
s
>
<
s
xml:id
="
N14952
"
xml:space
="
preserve
">Et ſic patet concluſio.
<
note
position
="
left
"
xlink:href
="
note-0047-01a
"
xlink:label
="
note-0047-01
"
xml:id
="
N14B1B
"
xml:space
="
preserve
">1. correl.</
note
>
</
s
>
<
s
xml:id
="
N1495A
"
xml:space
="
preserve
">¶ Ex quo ſequitur primo. /
<
lb
/>
ꝓportio dupla ad nullam ꝓportionem rationa-
<
lb
/>
lem ſe habet in ꝓportione dupla: aut tripla. aut
<
lb
/>
quadrupla: aut in aliqua alia multiplici: nec quin
<
lb
/>
tupla, nec ſextupla etc. </
s
>
<
s
xml:id
="
N14965
"
xml:space
="
preserve
">Probatur / quia inter pri-
<
lb
/>
mos numeros ꝓportionis duple nullus numerus
<
lb
/>
reperitur (computamus enim vnitatem pro nume
<
lb
/>
ro). </
s
>
<
s
xml:id
="
N1496E
"
xml:space
="
preserve
">Item inter primos numeros proportionis
<
lb
/>
quintuple qui ſunt .5. et .1. non reperiuntur aliqui
<
lb
/>
numeri continuo ꝓportionabiles adequate com
<
lb
/>
putatis extremis / vt conſtat. </
s
>
<
s
xml:id
="
N14977
"
xml:space
="
preserve
">Et ſic patet etiam de
<
lb
/>
ſextupla. </
s
>
<
s
xml:id
="
N1497C
"
xml:space
="
preserve
">Patet igitur correlarium.
<
note
position
="
left
"
xlink:href
="
note-0047-02a
"
xlink:label
="
note-0047-02
"
xml:id
="
N14B21
"
xml:space
="
preserve
">2. correĺ.</
note
>
</
s
>
<
s
xml:id
="
N14984
"
xml:space
="
preserve
">¶ Sequitur
<
lb
/>
ſecundo / nulla ꝓportio ſuperparticularis ſe ha
<
lb
/>
bet in aliqua ꝓportione multiplici ad aliquam ꝓ
<
lb
/>
portionem rationalem. </
s
>
<
s
xml:id
="
N1498D
"
xml:space
="
preserve
">Patet / quia inter cuiuſli
<
lb
/>
bet ſuperparticularis primos terminos nullꝰ re-
<
lb
/>
peritur numerus: igitur.
<
note
position
="
left
"
xlink:href
="
note-0047-03a
"
xlink:label
="
note-0047-03
"
xml:id
="
N14B27
"
xml:space
="
preserve
">3. correl.</
note
>
</
s
>
<
s
xml:id
="
N14999
"
xml:space
="
preserve
">¶ Sequitur tertio / pro
<
lb
/>
poſita quauis proportione rationali inueſtigare
<
lb
/>
poſſumus an habeat aliquam ꝓportionem ratio
<
lb
/>
nalem que ſe habeat ad ipſam in ꝓportione ſexq̇-
<
lb
/>
altera: ſexquitertia: ſexquiquarta etc. / vt ꝓpoſita
<
lb
/>
ꝓportione dupla: videre an ſit aliqua ꝓportio ra
<
lb
/>
tionalis que ſe habeat ad ipſam duplam in pro-
<
lb
/>
portione ſexquialtera, ſexquitertia, aut in aliqua
<
lb
/>
alia ſuperparticulari. </
s
>
<
s
xml:id
="
N149AC
"
xml:space
="
preserve
">Ad quod inueſtiganduꝫ et
<
lb
/>
ſciendum videndum eſt an inter primos numeros
<
lb
/>
ꝓportiouis duple aut cuiuſuis alterius rationa-
<
lb
/>
lis ſint tres numeri continuo ꝓportionabiles cõ-
<
lb
/>
putatis extremis: et ſi ſic: talis ꝓportio habet me
<
lb
/>
dietatem rationalem: et per conſequens ſexquial
<
cb
chead
="
Capitulum ſextum
"/>
teram rationalem ad ipſam. </
s
>
<
s
xml:id
="
N149BC
"
xml:space
="
preserve
">Addendo enī et me-
<
lb
/>
dietatem ſui conſtituetur ſexquialtera rationalis
<
lb
/>
ad ipſaꝫ. </
s
>
<
s
xml:id
="
N149C3
"
xml:space
="
preserve
">Et ſi inter primos numeros eius compu
<
lb
/>
tatis extremis inueniantur quatuor numeri conti
<
lb
/>
nuo ꝓportionabiles: ipſa habebit tertiam ratio
<
lb
/>
nalem et per conſequens ſexquitertiam rationa-
<
lb
/>
lem ad ſeipſam: et ſi reperiuntur .5. numeri conti-
<
lb
/>
nuo ꝓportionabiles computatis extremis ip̄a ha
<
lb
/>
bebit quartam rationalem: et per conſequens ſex
<
lb
/>
quiquartam rationalem / et ſic conſequenter. </
s
>
<
s
xml:id
="
N149D4
"
xml:space
="
preserve
">Et
<
lb
/>
ſic patet correlarium.
<
note
position
="
right
"
xlink:href
="
note-0047-04a
"
xlink:label
="
note-0047-04
"
xml:id
="
N14B2D
"
xml:space
="
preserve
">4. correl.</
note
>
</
s
>
<
s
xml:id
="
N149DE
"
xml:space
="
preserve
">¶ Sequitur quarto / ꝓpo
<
lb
/>
ſita quauis ꝓportione rationali: inquirere et ſci-
<
lb
/>
re poterimus an habeat aliquam ſuprapartien-
<
lb
/>
tem, multiplicem ſuperparticulareꝫ, vel multipli
<
lb
/>
cem ſuprapartientem, rationales. </
s
>
<
s
xml:id
="
N149E9
"
xml:space
="
preserve
">vt ꝓpoſita pro
<
lb
/>
portione octupla īueſtigare poterimus et ſcire ex
<
lb
/>
dictis an habeat ſuprabipartientem tertias ſu-
<
lb
/>
prapartientem quartas rationales etc. </
s
>
<
s
xml:id
="
N149F2
"
xml:space
="
preserve
">Ad quod
<
lb
/>
ſciendum et inueſtigandum: conſiderandum ē an
<
lb
/>
data proportio rationalis habeat illam partem
<
lb
/>
aliquotam rationalem: hoc eſt an aliqua propor
<
lb
/>
tio rationalis ſit tota pars aliquota eius quota
<
lb
/>
eſt illa a qua denominatur dicta proportio ſupra
<
lb
/>
partiens, ant multiplex ſuperparticularis, aut
<
lb
/>
multiplex ſuprapartiens: quod inueſtigari et ſciri
<
lb
/>
debet ex vndecima concluſione: et ſi repperias /
<
lb
/>
habet proportionem aliquam rationalem que ſit
<
lb
/>
talis pars aliquota eius: tunc manifeſtum ē / ha
<
lb
/>
bet proportionem rationalem que denominatur
<
lb
/>
a tali parte aliquota vel talibus partibus aliquo
<
lb
/>
tis (quod dico ꝓpter ſuprapartientes) ſi vero nõ:
<
lb
/>
tunc manifeſtum eſt illam proportionem rationa
<
lb
/>
lem propoſitam non habere proportionem ratio
<
lb
/>
nalem denominatam a tali parte aliquota vel ta
<
lb
/>
libus partibus. </
s
>
<
s
xml:id
="
N14A17
"
xml:space
="
preserve
">Probatur hoc demonſtratione
<
lb
/>
particulari que equiualebit vniuerſali. </
s
>
<
s
xml:id
="
N14A1C
"
xml:space
="
preserve
">Data em̄
<
lb
/>
ꝓportione ſexdecupla volo inueſtigare et ſcire an
<
lb
/>
habeat proportionem ſupratripartientem quar-
<
lb
/>
tas ad quod inueſtigandum conſiderabo ex doc-
<
lb
/>
trina vndecime concluſionis an talis ꝓportio ſex
<
lb
/>
decupla habeat ſubquadruplam rationaleꝫ que
<
lb
/>
ſit vna quarta eius: et inuento ſic eo / inter ter
<
lb
/>
minos eius computatis extremis inueniuntur
<
lb
/>
quin numeri continuo ꝓportionabiles ꝓportio
<
lb
/>
ne dupla: aſſeuerabo conſtanter illam proportio
<
lb
/>
nem habere proportionem rationalem ſupertri-
<
lb
/>
partientem quartas: et multiplicem ſexquiquar-
<
lb
/>
tam et multiplicem ſupratripartientem quartas
<
lb
/>
rationales. </
s
>
<
s
xml:id
="
N14A39
"
xml:space
="
preserve
">Quod ſic monſtratur </
s
>
<
s
xml:id
="
N14A3C
"
xml:space
="
preserve
">Nam ſi ſupra il
<
lb
/>
lam proportionem ſexdecuplam que eſt .16. ad .1.
<
lb
/>
addantur tres proportiones duple: tunc aggre-
<
lb
/>
gatum ex ſexdecupla et illis tribus duplis ſuꝑ ad
<
lb
/>
ditis qualis eſt proportio .128. ad .1. ſe habebit ad
<
lb
/>
proportionem ſexdecuplam in proportiõe ſupra-
<
lb
/>
tripartiente quartas. </
s
>
<
s
xml:id
="
N14A4B
"
xml:space
="
preserve
">Continet enim ſexdecu-
<
lb
/>
plam et tres quartas eius. </
s
>
<
s
xml:id
="
N14A50
"
xml:space
="
preserve
">Item triplando illam
<
lb
/>
proportionem ſexdecuplam / et addendo vnam ſui
<
lb
/>
quartam habebis ꝓportionem triplam ſexquiq̈r
<
lb
/>
tam ad ſexdecuplam: et addendo ei duas quartas
<
lb
/>
habebis triplam ſexquialteram: et addendo ſuꝑ
<
lb
/>
illam triplatam .3. quartas habebis triplam ſu-
<
lb
/>
pratripartientem quartas rationalem ad ſexde-
<
lb
/>
cuplam. </
s
>
<
s
xml:id
="
N14A61
"
xml:space
="
preserve
">Omnia iſta patet ex diffinitionibus ſu-
<
lb
/>
prapartiētis, multiplicis ſuperparticularis. </
s
>
<
s
xml:id
="
N14A66
"
xml:space
="
preserve
">aut
<
lb
/>
multiplicis ſuprapartientis. </
s
>
<
s
xml:id
="
N14A6B
"
xml:space
="
preserve
">hoc addito / cuili-
<
lb
/>
bet proportioni rationali addi poteſt queuis alia
<
lb
/>
rationalis: aggregato ex ipſis manente rationa
<
lb
/>
li proportione. </
s
>
<
s
xml:id
="
N14A74
"
xml:space
="
preserve
">Ex quibuſcnn enim rationalibꝰ
<
lb
/>
et quotcun: rationalis componitur: q2 alias in </
s
>
</
p
>
</
div
>
</
div
>
</
div
>
</
text
>
</
echo
>