Barrow, Isaac
,
Lectiones opticae & geometricae : in quibus phaenomenon opticorum genuinae rationes investigantur, ac exponuntur: et generalia curvarum linearum symptomata declarantur
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
page
|<
<
(29)
of 393
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div32
"
type
="
section
"
level
="
1
"
n
="
12
">
<
pb
o
="
29
"
file
="
0047
"
n
="
47
"
rhead
="
"/>
<
p
>
<
s
xml:id
="
echoid-s1280
"
xml:space
="
preserve
">3. </
s
>
<
s
xml:id
="
echoid-s1281
"
xml:space
="
preserve
">Non abſimiliter in _Hyperbola_, (cujus itidem axis BD, foci H, K;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s1282
"
xml:space
="
preserve
">reliquiſque velut anteà præparatis) oſtendetur fore perpetuò NK. </
s
>
<
s
xml:id
="
echoid-s1283
"
xml:space
="
preserve
">
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0047-01
"
xlink:href
="
note-0047-01a
"
xml:space
="
preserve
">Fig. 27.</
note
>
CK :</
s
>
<
s
xml:id
="
echoid-s1284
"
xml:space
="
preserve
">: BD. </
s
>
<
s
xml:id
="
echoid-s1285
"
xml:space
="
preserve
">HK. </
s
>
<
s
xml:id
="
echoid-s1286
"
xml:space
="
preserve
">unde ſi fuerit (ex _Hyperbolæ_ conſtructione) BD.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s1287
"
xml:space
="
preserve
">HK :</
s
>
<
s
xml:id
="
echoid-s1288
"
xml:space
="
preserve
">: I. </
s
>
<
s
xml:id
="
echoid-s1289
"
xml:space
="
preserve
">R. </
s
>
<
s
xml:id
="
echoid-s1290
"
xml:space
="
preserve
">erit etiam NK. </
s
>
<
s
xml:id
="
echoid-s1291
"
xml:space
="
preserve
">CK :</
s
>
<
s
xml:id
="
echoid-s1292
"
xml:space
="
preserve
">: I. </
s
>
<
s
xml:id
="
echoid-s1293
"
xml:space
="
preserve
">R. </
s
>
<
s
xml:id
="
echoid-s1294
"
xml:space
="
preserve
">quòd ſi radius MN ad
<
lb
/>
CB parallelus refringatur in NK; </
s
>
<
s
xml:id
="
echoid-s1295
"
xml:space
="
preserve
">hoc idem accidet, ut nempe ſit
<
lb
/>
NK. </
s
>
<
s
xml:id
="
echoid-s1296
"
xml:space
="
preserve
">CK :</
s
>
<
s
xml:id
="
echoid-s1297
"
xml:space
="
preserve
">: I. </
s
>
<
s
xml:id
="
echoid-s1298
"
xml:space
="
preserve
">R. </
s
>
<
s
xml:id
="
echoid-s1299
"
xml:space
="
preserve
">quare radii MN refractus per _Hyperbolæ_ focum
<
lb
/>
tranſibit.</
s
>
<
s
xml:id
="
echoid-s1300
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1301
"
xml:space
="
preserve
">4. </
s
>
<
s
xml:id
="
echoid-s1302
"
xml:space
="
preserve
">Quòd verò ab _Ellipſis_ aut _Hyperbolæ_ cujuſvis focorum alterutro
<
lb
/>
quilibet curvæ incidens radieus in alterum reflectatur, admodum facilè
<
lb
/>
diluceſcit. </
s
>
<
s
xml:id
="
echoid-s1303
"
xml:space
="
preserve
">Nam in ellipſe, perpendicularis NC, in _Hyperbolæ_, tan-
<
lb
/>
gens. </
s
>
<
s
xml:id
="
echoid-s1304
"
xml:space
="
preserve
">NT biſecat angulum HNK. </
s
>
<
s
xml:id
="
echoid-s1305
"
xml:space
="
preserve
">unde patet propoſitum, Hæc
<
lb
/>
extra noſtras oleas poſita curſim & </
s
>
<
s
xml:id
="
echoid-s1306
"
xml:space
="
preserve
">leviſſimè perſtringo; </
s
>
<
s
xml:id
="
echoid-s1307
"
xml:space
="
preserve
">nec tamen
<
lb
/>
ut eò multa putem deſiderari.</
s
>
<
s
xml:id
="
echoid-s1308
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1309
"
xml:space
="
preserve
">Revertamur in orbitani; </
s
>
<
s
xml:id
="
echoid-s1310
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1311
"
xml:space
="
preserve
">quidem derelictis his generaliſſimis,
<
lb
/>
ac abſtractiſſimis, lemmatum vicem obituris, ad particularia deſcenda-
<
lb
/>
mus. </
s
>
<
s
xml:id
="
echoid-s1312
"
xml:space
="
preserve
">Ad planas verò ſuperficies (vel earum loco propter inſinuatam
<
lb
/>
antehac cauſam ſubrogatas lineas rectas) inflexis obtingentia radiis pri-
<
lb
/>
mò contemplemur. </
s
>
<
s
xml:id
="
echoid-s1313
"
xml:space
="
preserve
">Etiam quoad has Catoptricis primum, utpote fa-
<
lb
/>
cillimis, breviſſimè defungemur.</
s
>
<
s
xml:id
="
echoid-s1314
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1315
"
xml:space
="
preserve
">XIII. </
s
>
<
s
xml:id
="
echoid-s1316
"
xml:space
="
preserve
">1. </
s
>
<
s
xml:id
="
echoid-s1317
"
xml:space
="
preserve
">Parallelorum ſibi radiorum (AB, MN) rectæ (EF) in-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0047-02
"
xlink:href
="
note-0047-02a
"
xml:space
="
preserve
">Fig. 28.</
note
>
cidentium reflexi (B _α_, Nμ) ſunt etiam ſibi paralleli.</
s
>
<
s
xml:id
="
echoid-s1318
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1319
"
xml:space
="
preserve
">Nam quoniam AB, MN ex hypotheſi ſunt pàralleli, erunt anguli
<
lb
/>
ABE, MNE pares. </
s
>
<
s
xml:id
="
echoid-s1320
"
xml:space
="
preserve
">Ergò ſunt anguli _α_ BF, μ NF etiam pares.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s1321
"
xml:space
="
preserve
">Quare rectæ _α_ B, μ N ſunt parallelæ.</
s
>
<
s
xml:id
="
echoid-s1322
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1323
"
xml:space
="
preserve
">XIV. </
s
>
<
s
xml:id
="
echoid-s1324
"
xml:space
="
preserve
">2. </
s
>
<
s
xml:id
="
echoid-s1325
"
xml:space
="
preserve
">Sit recta ABZ rectæ reflectenti EF perpendicularis; </
s
>
<
s
xml:id
="
echoid-s1326
"
xml:space
="
preserve
">cum
<
lb
/>
hacverò promanantis ab A cujuſvis radii AN reflexus _α_ N. </
s
>
<
s
xml:id
="
echoid-s1327
"
xml:space
="
preserve
">conveniat
<
lb
/>
in Z; </
s
>
<
s
xml:id
="
echoid-s1328
"
xml:space
="
preserve
">dico forè BZ = AB. </
s
>
<
s
xml:id
="
echoid-s1329
"
xml:space
="
preserve
">Nam ang. </
s
>
<
s
xml:id
="
echoid-s1330
"
xml:space
="
preserve
">ANB = ang. </
s
>
<
s
xml:id
="
echoid-s1331
"
xml:space
="
preserve
">_α_ NF =
<
lb
/>
ZNB. </
s
>
<
s
xml:id
="
echoid-s1332
"
xml:space
="
preserve
">quare liquet triangula BNA, BNZ ſibi mutuò æquilatera
<
lb
/>
fore; </
s
>
<
s
xml:id
="
echoid-s1333
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s1334
"
xml:space
="
preserve
">eſſe AB = BZ: </
s
>
<
s
xml:id
="
echoid-s1335
"
xml:space
="
preserve
">Q. </
s
>
<
s
xml:id
="
echoid-s1336
"
xml:space
="
preserve
">E. </
s
>
<
s
xml:id
="
echoid-s1337
"
xml:space
="
preserve
">D.</
s
>
<
s
xml:id
="
echoid-s1338
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1339
"
xml:space
="
preserve
">XV. </
s
>
<
s
xml:id
="
echoid-s1340
"
xml:space
="
preserve
">3. </
s
>
<
s
xml:id
="
echoid-s1341
"
xml:space
="
preserve
">Hinc, omnes ab uno puncto, divergentium tanquam ab altero
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0047-03
"
xlink:href
="
note-0047-03a
"
xml:space
="
preserve
">Fig. 29.</
note
>
quodam uno prodeuntes.</
s
>
<
s
xml:id
="
echoid-s1342
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1343
"
xml:space
="
preserve
">Quoad punctum longè diſſitum (ſuo parallelos ad ſenſum radios eja-
<
lb
/>
@ulante) patet è penultima. </
s
>
<
s
xml:id
="
echoid-s1344
"
xml:space
="
preserve
">Quòad punctum è ſenſibiliter finita di-
<
lb
/>
ſtantia radians, ex ultima patet, quòd omnium ab A divergentium ra-
<
lb
/>
diorum reflexi protracti concurrunt in Z; </
s
>
<
s
xml:id
="
echoid-s1345
"
xml:space
="
preserve
">adeóque videbuntur ab eo
<
lb
/>
promanare.</
s
>
<
s
xml:id
="
echoid-s1346
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>