Theodosius <Bithynius>; Clavius, Christoph
,
Theodosii Tripolitae Sphaericorum libri tres
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of figures
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 240
241 - 270
271 - 300
301 - 330
331 - 360
361 - 372
[out of range]
>
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 240
241 - 270
271 - 300
301 - 330
331 - 360
361 - 372
[out of range]
>
page
|<
<
(461)
of 532
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div1311
"
type
="
section
"
level
="
1
"
n
="
607
">
<
p
>
<
s
xml:id
="
echoid-s16363
"
xml:space
="
preserve
">
<
pb
o
="
461
"
file
="
473
"
n
="
473
"
rhead
="
"/>
autem, vt produceretur verſus maiorem arcum, qui hic ſit AC. </
s
>
<
s
xml:id
="
echoid-s16364
"
xml:space
="
preserve
">Erunt au-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-473-01
"
xlink:href
="
note-473-01a
"
xml:space
="
preserve
">comprehe
<
unsure
/>
<
lb
/>
dẽtes ſunt
<
lb
/>
inæquales.</
note
>
tem anguli D, E, recti, ob quadrantes AD, AE. </
s
>
<
s
xml:id
="
echoid-s16365
"
xml:space
="
preserve
">Quoniam igitur duo maximi
<
lb
/>
circuli BF, DF, ſe interſecant in F, & </
s
>
<
s
xml:id
="
echoid-s16366
"
xml:space
="
preserve
">à pun-
<
lb
/>
<
figure
xlink:label
="
fig-473-01
"
xlink:href
="
fig-473-01a
"
number
="
341
">
<
image
file
="
473-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/YC97H42F/figures/473-01
"/>
</
figure
>
ctis B, C, arcus BF, ad arcum DF, demiſsi
<
lb
/>
ſunt perpendiculares arcus BD, CE; </
s
>
<
s
xml:id
="
echoid-s16367
"
xml:space
="
preserve
">erit, vt
<
lb
/>
ſinus arcus BF, ad ſinum arcus BD, ita ſinus
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-473-02
"
xlink:href
="
note-473-02a
"
xml:space
="
preserve
">40. huius.</
note
>
arcus CF, ad ſinum arcus CE: </
s
>
<
s
xml:id
="
echoid-s16368
"
xml:space
="
preserve
">Et permutan
<
lb
/>
do, vt ſinus arcus BF, ad ſinum arcus CF, ita
<
lb
/>
ſinus arcus BD, ad ſinum arcus CE. </
s
>
<
s
xml:id
="
echoid-s16369
"
xml:space
="
preserve
">Eſt au-
<
lb
/>
tem proportio ſinus arcus BD, ad ſinum ar-
<
lb
/>
cus CE, data, quòd arcus BD, CE, dati ſint,
<
lb
/>
vtpotè complementa datorum arcuum AB,
<
lb
/>
AC. </
s
>
<
s
xml:id
="
echoid-s16370
"
xml:space
="
preserve
">Igitur proportio ſinus arcus BF, ad ſi-
<
lb
/>
num arcus CF, data quoque erit, nempe in
<
lb
/>
ſinubus complementorum, arcuum datorum
<
lb
/>
AB, AC: </
s
>
<
s
xml:id
="
echoid-s16371
"
xml:space
="
preserve
">Sed & </
s
>
<
s
xml:id
="
echoid-s16372
"
xml:space
="
preserve
">eorundem arcuum BF, CF,
<
lb
/>
quorum ſinguli ſemicirculo minores ſunt, differentia data eſt, nempe arcus
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-473-03
"
xlink:href
="
note-473-03a
"
xml:space
="
preserve
">2. huius.</
note
>
BC. </
s
>
<
s
xml:id
="
echoid-s16373
"
xml:space
="
preserve
">Vterque ergo arcus BF, CF, notus reddetur. </
s
>
<
s
xml:id
="
echoid-s16374
"
xml:space
="
preserve
">Itaque quoniam in trian
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-473-04
"
xlink:href
="
note-473-04a
"
xml:space
="
preserve
">7. triãg. re-
<
lb
/>
ctil.</
note
>
gulo BFD, habente angulum D, rectum, datus eſt arcus BF, recto angulo op-
<
lb
/>
poſitus cum arcu BD, complemento videlicet arcus AB, dati; </
s
>
<
s
xml:id
="
echoid-s16375
"
xml:space
="
preserve
">cognitus erit
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-473-05
"
xlink:href
="
note-473-05a
"
xml:space
="
preserve
">Schol. 53.
<
lb
/>
vel 43. huiꝰ.</
note
>
& </
s
>
<
s
xml:id
="
echoid-s16376
"
xml:space
="
preserve
">tertius arcus DF. </
s
>
<
s
xml:id
="
echoid-s16377
"
xml:space
="
preserve
">Eadem ratione, cum in triangulo CFE, angulum ha-
<
lb
/>
bente rectum E, datus ſit arcus CF, angulo recto oppoſitus, cum arcu CE,
<
lb
/>
complemento nimirum arcus dati AC; </
s
>
<
s
xml:id
="
echoid-s16378
"
xml:space
="
preserve
">cognoſcetur, etiã tertius arcus EF: </
s
>
<
s
xml:id
="
echoid-s16379
"
xml:space
="
preserve
">qui
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-473-06
"
xlink:href
="
note-473-06a
"
xml:space
="
preserve
">Schol. 53.
<
lb
/>
vel 43. huiꝰ.</
note
>
ſubtractus ex inuento arcu DF, notum reddet arcum reliquum DE, anguli A;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s16380
"
xml:space
="
preserve
">ac proinde angulus A, cognitus erit. </
s
>
<
s
xml:id
="
echoid-s16381
"
xml:space
="
preserve
">Rurſus in triangulo priore BFD, cuius
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-473-07
"
xlink:href
="
note-473-07a
"
xml:space
="
preserve
">Schol. 51.
<
lb
/>
vel 45. huiꝰ.</
note
>
angulus D, rectus, cum datus ſit arcus BF, recto angulo oppoſitus, cum arcu
<
lb
/>
BD, complemento videlicet arcus dati AB:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s16382
"
xml:space
="
preserve
">VEL, cum duo arcus BD, DF, circa angulum re-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-473-08
"
xlink:href
="
note-473-08a
"
xml:space
="
preserve
">Schol. 44.
<
lb
/>
vel 48. huiꝰ.</
note
>
ctum dati ſint:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s16383
"
xml:space
="
preserve
">AVT denique, cum datus ſit arcus BF, recto angu-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-473-09
"
xlink:href
="
note-473-09a
"
xml:space
="
preserve
">Schol. 55.
<
lb
/>
vel 41. huiꝰ.</
note
>
lo oppoſitus, & </
s
>
<
s
xml:id
="
echoid-s16384
"
xml:space
="
preserve
">arcus DF;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s16385
"
xml:space
="
preserve
">inuenietur quoque, ex ſcholijs in margine citatis, angulus DBF: </
s
>
<
s
xml:id
="
echoid-s16386
"
xml:space
="
preserve
">ideoque & </
s
>
<
s
xml:id
="
echoid-s16387
"
xml:space
="
preserve
">
<
lb
/>
reliquus duorum rectorum ABC, notus erit. </
s
>
<
s
xml:id
="
echoid-s16388
"
xml:space
="
preserve
">Eadem ratione, cum in poſte-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-473-10
"
xlink:href
="
note-473-10a
"
xml:space
="
preserve
">Schol. 51.
<
lb
/>
vel 45. huiꝰ.</
note
>
riore triangulo CFE, angulum E, habente rectum, datus ſit arcus CF, angu-
<
lb
/>
lo recto oppoſitus, cum arcu CE, complemento nimirum arcus dati AC:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s16389
"
xml:space
="
preserve
">VEL, cum duo arcus CE, EF, circa rectum angu-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-473-11
"
xlink:href
="
note-473-11a
"
xml:space
="
preserve
">Schol. 44.
<
lb
/>
vel 48. huiꝰ.</
note
>
lum dati ſint:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s16390
"
xml:space
="
preserve
">AVT denique, cum datus ſit arcus CF, recto angu-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-473-12
"
xlink:href
="
note-473-12a
"
xml:space
="
preserve
">Schol. 55.
<
lb
/>
vel 41. huiꝰ.</
note
>
lo oppoſitus, & </
s
>
<
s
xml:id
="
echoid-s16391
"
xml:space
="
preserve
">inſuper arcus EF;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s16392
"
xml:space
="
preserve
">cognoſcetur etiam, ex ſcholijs in margine poſitis, angu-
<
lb
/>
<
figure
xlink:label
="
fig-473-02
"
xlink:href
="
fig-473-02a
"
number
="
342
">
<
image
file
="
473-02
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/YC97H42F/figures/473-02
"/>
</
figure
>
lus ECF: </
s
>
<
s
xml:id
="
echoid-s16393
"
xml:space
="
preserve
">ideoq́ue & </
s
>
<
s
xml:id
="
echoid-s16394
"
xml:space
="
preserve
">angulus ACB, qui ei ad verticem
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-473-13
"
xlink:href
="
note-473-13a
"
xml:space
="
preserve
">6. huius.</
note
>
æqualis eſt, notus erit. </
s
>
<
s
xml:id
="
echoid-s16395
"
xml:space
="
preserve
">Tres ergo anguli trianguli ABC,
<
lb
/>
omnes noti facti ſunt.</
s
>
<
s
xml:id
="
echoid-s16396
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s16397
"
xml:space
="
preserve
">SINT deinde duo arcus inæquales AB, AC, maio-
<
lb
/>
res quadrante. </
s
>
<
s
xml:id
="
echoid-s16398
"
xml:space
="
preserve
">Prodocantur, donec coeant in D. </
s
>
<
s
xml:id
="
echoid-s16399
"
xml:space
="
preserve
">Erunt
<
lb
/>
iu triangulo DBC, duo arcus DB, DC, quadrante mi-
<
lb
/>
nores, atq; </
s
>
<
s
xml:id
="
echoid-s16400
"
xml:space
="
preserve
">adeo noti, cum reliqui ſint ex arcubus ABD,
<
lb
/>
ACD, qui ſemicirculi ſunt. </
s
>
<
s
xml:id
="
echoid-s16401
"
xml:space
="
preserve
">Igitur, vt proxime demon-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-473-14
"
xlink:href
="
note-473-14a
"
xml:space
="
preserve
">11. 1 Theod.</
note
>
</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>