Clavius, Christoph
,
Gnomonices libri octo, in quibus non solum horologiorum solariu[m], sed aliarum quo[quam] rerum, quae ex gnomonis umbra cognosci possunt, descriptiones geometricè demonstrantur
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Figures
Content
Thumbnails
page
|<
<
(458)
of 677
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
it
"
type
="
free
">
<
div
xml:id
="
echoid-div1527
"
type
="
section
"
level
="
1
"
n
="
364
">
<
pb
o
="
458
"
file
="
0474
"
n
="
474
"
rhead
="
GNOMONICES
"/>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s30298
"
xml:space
="
preserve
">QVOD ſi planum ex parte auſtr ali eleuetur ſupra Horizontem, ſecet{q́ue} Meridianum inter Hori-
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0474-01
"
xlink:href
="
note-0474-01a
"
xml:space
="
preserve
">Quando planũ
<
lb
/>
ex parte auſtra
<
lb
/>
li inclinatum
<
lb
/>
eſt ad Horizon
<
lb
/>
tem vbieunq;
<
lb
/>
Meridianũ ſe-
<
lb
/>
cet, quo pacto
<
lb
/>
diſtãtia minor
<
lb
/>
Solis à meri-
<
lb
/>
die, cum in ce
<
lb
/>
plano exiſtit, in
<
lb
/>
@@niatur.</
note
>
zontẽ & </
s
>
<
s
xml:id
="
echoid-s30299
"
xml:space
="
preserve
">parallelum auſtralem, vt in quarta figura, inuestigabimus diſtantiam Solis à meridie, vt in pri-
<
lb
/>
ma figura, vbi planum ex parte boreali inclinatum ſecat Meridianum inter Horizontem, & </
s
>
<
s
xml:id
="
echoid-s30300
"
xml:space
="
preserve
">polum ar-
<
lb
/>
<
figure
xlink:label
="
fig-0474-01
"
xlink:href
="
fig-0474-01a
"
number
="
311
">
<
image
file
="
0474-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/xxxxxxxx/figures/0474-01
"/>
</
figure
>
<
note
position
="
left
"
xlink:label
="
note-0474-02
"
xlink:href
="
note-0474-02a
"
xml:space
="
preserve
">10</
note
>
<
note
position
="
left
"
xlink:label
="
note-0474-03
"
xlink:href
="
note-0474-03a
"
xml:space
="
preserve
">20</
note
>
cticum. </
s
>
<
s
xml:id
="
echoid-s30301
"
xml:space
="
preserve
">Si autem planum ſecet Meridianum inter Aequatorem, & </
s
>
<
s
xml:id
="
echoid-s30302
"
xml:space
="
preserve
">parallelum australem, vt in quinta
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0474-04
"
xlink:href
="
note-0474-04a
"
xml:space
="
preserve
">30</
note
>
figura, auferendus eſt arcus Aequatoris E K, inter planum & </
s
>
<
s
xml:id
="
echoid-s30303
"
xml:space
="
preserve
">Meridianum ex arcu T K, qui inter pla-
<
lb
/>
num, & </
s
>
<
s
xml:id
="
echoid-s30304
"
xml:space
="
preserve
">circulum declinationis interijcitur, vt relinquatur arcus E T, qui ſimilis est arcui H R, di-
<
lb
/>
ſtantiæ Solis à meridie in parallelo auſtrali: </
s
>
<
s
xml:id
="
echoid-s30305
"
xml:space
="
preserve
">Eidem verò arcui E K, adijciendus eſt arcus P K, vt con-
<
lb
/>
ficiatur arcus E P, qui ſimilis eſt arcui H M, diſtantiæ Solis à meridie in parallelo boreali oppoſito. </
s
>
<
s
xml:id
="
echoid-s30306
"
xml:space
="
preserve
">Si
<
lb
/>
denique planum inclinatum ex parte auſtrali ſecet Meridianum inter Aequatorem, & </
s
>
<
s
xml:id
="
echoid-s30307
"
xml:space
="
preserve
">parallelum bo-
<
lb
/>
realem, vel inter verticem loci, & </
s
>
<
s
xml:id
="
echoid-s30308
"
xml:space
="
preserve
">parallelum borealem, inquirenda erit diſtantia Solis à meridie, vt
<
lb
/>
in tertia figura, vbi planum ex parte boreali inclinatum ſecat Meridianum inter Aequatorem, & </
s
>
<
s
xml:id
="
echoid-s30309
"
xml:space
="
preserve
">pa-
<
lb
/>
rallelum borealem; </
s
>
<
s
xml:id
="
echoid-s30310
"
xml:space
="
preserve
">vel, vt in ſecunda figura, vbi planum ex parte boreali inclinatum ſecat Meridianum
<
lb
/>
inter polum arcticum, & </
s
>
<
s
xml:id
="
echoid-s30311
"
xml:space
="
preserve
">par allelum borealem.</
s
>
<
s
xml:id
="
echoid-s30312
"
xml:space
="
preserve
"/>
</
p
>
<
note
position
="
left
"
xml:space
="
preserve
">Maior diſtan-
<
lb
/>
tia Solis à me-
<
lb
/>
ridie, cum in
<
lb
/>
plano inclina-
<
lb
/>
to, & parallelo
<
lb
/>
quocunque exi
<
lb
/>
ſſit, qua ratio-
<
lb
/>
ne inueſtige-
<
lb
/>
tut.</
note
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s30313
"
xml:space
="
preserve
">HACTENVS minorem arcum diſtantiæ Solis à meridie in quouis parallelo inueſtigauimus ex
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0474-06
"
xlink:href
="
note-0474-06a
"
xml:space
="
preserve
">40</
note
>
minori arcu Aequatoris inter planum inclinatum, & </
s
>
<
s
xml:id
="
echoid-s30314
"
xml:space
="
preserve
">Meridianum interiecto, qualis est E K. </
s
>
<
s
xml:id
="
echoid-s30315
"
xml:space
="
preserve
">Quod ſi
<
lb
/>
dictum arcum Aequatoris E K, ex ſemicirculo K L, detr ahamus, remanebit maior arcus Aequatoris
<
lb
/>
E L, qui ex altera parte inter planum, & </
s
>
<
s
xml:id
="
echoid-s30316
"
xml:space
="
preserve
">Meridianum interijcitur, per quem explorabimus eodem
<
lb
/>
prorſus modo maiorem diſtantiam Solis in quouis parallelo, id eſt, arcu
<
unsure
/>
m H N, vel H S, addendo ni-
<
lb
/>
mirum arcum Q L, vel V L, arcui E L, aut ſubtrahendo, vt dictum est.</
s
>
<
s
xml:id
="
echoid-s30317
"
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s30318
"
xml:space
="
preserve
">QV ANDO planum ſecat Meridianum inter Aequatorem, & </
s
>
<
s
xml:id
="
echoid-s30319
"
xml:space
="
preserve
">parallelum borealem, vt in tertia
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0474-07
"
xlink:href
="
note-0474-07a
"
xml:space
="
preserve
">Quando paral
<
lb
/>
leius duobus
<
lb
/>
in punctis ſiue
<
lb
/>
ex parte orien-
<
lb
/>
tali, ſive occi-
<
lb
/>
deatali, à pla-
<
lb
/>
no inclinato ſe
<
lb
/>
catur, qua tatio
<
lb
/>
ne maior diſtã
<
lb
/>
tia Solis à me-
<
lb
/>
ridie inquira-
<
lb
/>
tur.</
note
>
figura, atq; </
s
>
<
s
xml:id
="
echoid-s30320
"
xml:space
="
preserve
">adeò parallelus ipſe ab eodẽ plano duobus in punctis occidẽtalibus, oriẽtalibus ve ſecatur, au
<
lb
/>
ferendus eſt arcus Q L, ex arcu E L, vt relinquatur arcus Aequatoris E Q, qui ſimilis eſt arcui H N,
<
lb
/>
hoc eſt, maiori diſtantiæ Solis à meridie in parallelo boreali. </
s
>
<
s
xml:id
="
echoid-s30321
"
xml:space
="
preserve
">Ex hoc arcu H N, ſi aufer atur minor diſtan-
<
lb
/>
tia à meridie H M, notus relinquetur arcus paralleli borealis M N, qui quoniam per propoſ. </
s
>
<
s
xml:id
="
echoid-s30322
"
xml:space
="
preserve
">19. </
s
>
<
s
xml:id
="
echoid-s30323
"
xml:space
="
preserve
">lib. </
s
>
<
s
xml:id
="
echoid-s30324
"
xml:space
="
preserve
">2.
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s30325
"
xml:space
="
preserve
">
<
note
position
="
left
"
xlink:label
="
note-0474-08
"
xlink:href
="
note-0474-08a
"
xml:space
="
preserve
">50</
note
>
Theod. </
s
>
<
s
xml:id
="
echoid-s30326
"
xml:space
="
preserve
">æqualis est alterno ſegmento paralleli auſtralis oppoſiti, ſi ad arcũ H R, minoris diſtantiæ Solis à
<
lb
/>
meridie in parallelo australi adijciatur arcus æqualis arcui M N, habebitur maior diſtantia Solis à me-
<
lb
/>
ridie in parallelo oppoſito auſtrali. </
s
>
<
s
xml:id
="
echoid-s30327
"
xml:space
="
preserve
">Quando denique planum ſecat Meridianum inter Aequatorem, & </
s
>
<
s
xml:id
="
echoid-s30328
"
xml:space
="
preserve
">
<
lb
/>
parallelum australem, vt in quinta figura, atque adeò parallelus ipſe ab eodem plano duobus in punctis
<
lb
/>
orientalibus, occidentalibusve ſecatur, auferendus quoque eſt arcus V L, ex arcu E L, vt relinquatur
<
lb
/>
arcus Aequatoris E V, qui ſimilis eſt arcui H S, hoc eſt, maiori diſtantiæ Solis à meridie in parallelo
<
lb
/>
australi. </
s
>
<
s
xml:id
="
echoid-s30329
"
xml:space
="
preserve
">Ex hoc arcu H S, ſi auferatur minor diſtantia Solis à meridie H R, notus relinquetur arcus
<
lb
/>
paralleli auſtralis R S, qui quoniam per propoſ. </
s
>
<
s
xml:id
="
echoid-s30330
"
xml:space
="
preserve
">19. </
s
>
<
s
xml:id
="
echoid-s30331
"
xml:space
="
preserve
">lib. </
s
>
<
s
xml:id
="
echoid-s30332
"
xml:space
="
preserve
">2. </
s
>
<
s
xml:id
="
echoid-s30333
"
xml:space
="
preserve
">Theod. </
s
>
<
s
xml:id
="
echoid-s30334
"
xml:space
="
preserve
">æqualis eſt alterno ſegmento paralle-
<
lb
/>
li borealis oppoſiti, ſi ad ar cum H M, minoris diſtantiæ Solis à meridie in parallelo borcali adij ciatur ar-
<
lb
/>
cus æqualis arcui R S, habebitur maior diſtantia Solis à meridie in parallelo oppoſito boreali.</
s
>
<
s
xml:id
="
echoid-s30335
"
xml:space
="
preserve
"/>
</
p
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s30336
"
xml:space
="
preserve
">REM hanc totam vnico exemplo illuſtrabimus. </
s
>
<
s
xml:id
="
echoid-s30337
"
xml:space
="
preserve
">Ponatur planum ad Horizontem rectum, declinãs
<
lb
/>
<
note
position
="
left
"
xlink:label
="
note-0474-09
"
xlink:href
="
note-0474-09a
"
xml:space
="
preserve
">Exemplum.</
note
>
</
s
>
</
p
>
</
div
>
</
text
>
</
echo
>