Theodosius <Bithynius>; Clavius, Christoph
,
Theodosii Tripolitae Sphaericorum libri tres
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
Table of figures
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 240
241 - 270
271 - 300
301 - 330
331 - 360
361 - 372
[out of range]
>
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 240
241 - 270
271 - 300
301 - 330
331 - 360
361 - 372
[out of range]
>
page
|<
<
(471)
of 532
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div1326
"
type
="
section
"
level
="
1
"
n
="
609
">
<
p
>
<
s
xml:id
="
echoid-s16883
"
xml:space
="
preserve
">
<
pb
o
="
471
"
file
="
483
"
n
="
483
"
rhead
="
"/>
æquales erunt, vt in vltima figura præcedentis propoſ. </
s
>
<
s
xml:id
="
echoid-s16884
"
xml:space
="
preserve
">oſtendimus: </
s
>
<
s
xml:id
="
echoid-s16885
"
xml:space
="
preserve
">ac proin-
<
lb
/>
de vterque angulus ad A, datus erit, cum dimidium ſit an-
<
lb
/>
<
figure
xlink:label
="
fig-483-01
"
xlink:href
="
fig-483-01a
"
number
="
348
">
<
image
file
="
483-01
"
xlink:href
="
http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/YC97H42F/figures/483-01
"/>
</
figure
>
guli BAC, dati. </
s
>
<
s
xml:id
="
echoid-s16886
"
xml:space
="
preserve
">Quoniam ergo in triangulo ABD, an-
<
lb
/>
gulum habente rectum D, datus eſt arcus AB, recto angu-
<
lb
/>
lo oppoſitus, cum angulo BAD, nimirum cum dimidio
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-483-01
"
xlink:href
="
note-483-01a
"
xml:space
="
preserve
">Schol. 41.
<
lb
/>
huius.</
note
>
datianguli BAC; </
s
>
<
s
xml:id
="
echoid-s16887
"
xml:space
="
preserve
">cognitus erit arcus BD, dato angulo
<
lb
/>
BAD, oppoſitus: </
s
>
<
s
xml:id
="
echoid-s16888
"
xml:space
="
preserve
">qui duplicatus totum arcum BC, quæ-
<
lb
/>
ſitum reddet notum. </
s
>
<
s
xml:id
="
echoid-s16889
"
xml:space
="
preserve
">Rurſus quia in eodem triangulo ABD,
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-483-02
"
xlink:href
="
note-483-02a
"
xml:space
="
preserve
">Schol. 51.
<
lb
/>
vel 45. huiꝰ.</
note
>
rectum habente angulum D, datus eſt arcus AB, angulo
<
lb
/>
recto opppoſitus, cum arcu BD, circa angulum rectum:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s16890
"
xml:space
="
preserve
">VEL, quia datus eſt arcus AB, recto angulo op-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-483-03
"
xlink:href
="
note-483-03a
"
xml:space
="
preserve
">Schol. 47.
<
lb
/>
huius.</
note
>
poſitus, & </
s
>
<
s
xml:id
="
echoid-s16891
"
xml:space
="
preserve
">præterea angulus non rectus BAD:
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s16892
"
xml:space
="
preserve
">VEL denique, quia datus eſt arcus BD, circa re-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-483-04
"
xlink:href
="
note-483-04a
"
xml:space
="
preserve
">Schol. 56.
<
lb
/>
vel 42. huiꝰ.</
note
>
ctum angulum, vnà cum angulo non recto BAD, qui
<
lb
/>
dato arcui BD, opponitur, conſtatq́; </
s
>
<
s
xml:id
="
echoid-s16893
"
xml:space
="
preserve
">pręterea ſpecies
<
lb
/>
reliqui anguli non recti B. </
s
>
<
s
xml:id
="
echoid-s16894
"
xml:space
="
preserve
">Nam ſi AB, fuerit quadran
<
lb
/>
te minor, erit angulus B, acutus, ſicut & </
s
>
<
s
xml:id
="
echoid-s16895
"
xml:space
="
preserve
">BAD, acutus
<
lb
/>
eſt: </
s
>
<
s
xml:id
="
echoid-s16896
"
xml:space
="
preserve
">Si vero AB, maior quadrante extiterit, erit angu-
<
lb
/>
lus B, obtuſus, quandoquidem BAD, acutus eſt;
<
lb
/>
</
s
>
<
s
xml:id
="
echoid-s16897
"
xml:space
="
preserve
">notus erit quoque, ex ſcholijs in margine adductis, angulus B; </
s
>
<
s
xml:id
="
echoid-s16898
"
xml:space
="
preserve
">ideoq́; </
s
>
<
s
xml:id
="
echoid-s16899
"
xml:space
="
preserve
">& </
s
>
<
s
xml:id
="
echoid-s16900
"
xml:space
="
preserve
">an-
<
lb
/>
gulus C, illi æqualis.</
s
>
<
s
xml:id
="
echoid-s16901
"
xml:space
="
preserve
"/>
</
p
>
<
note
position
="
right
"
xml:space
="
preserve
">38. huius.</
note
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s16902
"
xml:space
="
preserve
">PRAXIS petatur ex ſcholijs in margine adductis.</
s
>
<
s
xml:id
="
echoid-s16903
"
xml:space
="
preserve
"/>
</
p
>
<
note
position
="
right
"
xml:space
="
preserve
">Praxis.</
note
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s16904
"
xml:space
="
preserve
">SOLIS ſinubus ita vtemur. </
s
>
<
s
xml:id
="
echoid-s16905
"
xml:space
="
preserve
">Per praxim problematis 2. </
s
>
<
s
xml:id
="
echoid-s16906
"
xml:space
="
preserve
">ſcholij pro
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-483-07
"
xlink:href
="
note-483-07a
"
xml:space
="
preserve
">Praxis per
<
lb
/>
ſolos ſinus,
<
lb
/>
quádo dati
<
lb
/>
duo arcus
<
lb
/>
ſunt æqua-
<
lb
/>
les.</
note
>
poſ. </
s
>
<
s
xml:id
="
echoid-s16907
"
xml:space
="
preserve
">41. </
s
>
<
s
xml:id
="
echoid-s16908
"
xml:space
="
preserve
">exquiremus arum BD; </
s
>
<
s
xml:id
="
echoid-s16909
"
xml:space
="
preserve
">qui duplicatus totum BC, qui quæritur,
<
lb
/>
dabit. </
s
>
<
s
xml:id
="
echoid-s16910
"
xml:space
="
preserve
">Deinde ex praxi problemat is 2. </
s
>
<
s
xml:id
="
echoid-s16911
"
xml:space
="
preserve
">ſcholij propoſ. </
s
>
<
s
xml:id
="
echoid-s16912
"
xml:space
="
preserve
">42. </
s
>
<
s
xml:id
="
echoid-s16913
"
xml:space
="
preserve
">quæremus an-
<
lb
/>
gulum B; </
s
>
<
s
xml:id
="
echoid-s16914
"
xml:space
="
preserve
">cui æqualis eſt alter angulus C.</
s
>
<
s
xml:id
="
echoid-s16915
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s16916
"
xml:space
="
preserve
">DATIS igitur duobus arcubus trianguli ſphærici non rectanguli, cum
<
lb
/>
angulo ab ipſis comprehenſo; </
s
>
<
s
xml:id
="
echoid-s16917
"
xml:space
="
preserve
">reliquum arcum, cum reliquis angulis reperi-
<
lb
/>
mus. </
s
>
<
s
xml:id
="
echoid-s16918
"
xml:space
="
preserve
">Quod faciendum erat.</
s
>
<
s
xml:id
="
echoid-s16919
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div1338
"
type
="
section
"
level
="
1
"
n
="
610
">
<
head
xml:id
="
echoid-head645
"
xml:space
="
preserve
">SCHOLIVM.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s16920
"
xml:space
="
preserve
">HIC quoque potius vti voluimus theoremate ſcholij 2. </
s
>
<
s
xml:id
="
echoid-s16921
"
xml:space
="
preserve
">propoſ. </
s
>
<
s
xml:id
="
echoid-s16922
"
xml:space
="
preserve
">58 in demonſtra-
<
lb
/>
tione ſecunda huius problemat is, quam theoremate eiuſdem propoſ. </
s
>
<
s
xml:id
="
echoid-s16923
"
xml:space
="
preserve
">58. </
s
>
<
s
xml:id
="
echoid-s16924
"
xml:space
="
preserve
">vt praxis mi-
<
lb
/>
nus fieret laborioſa. </
s
>
<
s
xml:id
="
echoid-s16925
"
xml:space
="
preserve
">Nam cum ſit, vt quadratum ſinus totius ad rectangulum ſub ſi-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-483-08
"
xlink:href
="
note-483-08a
"
xml:space
="
preserve
">58. huius.</
note
>
nubus datorum arcuum inæqualium contentum, ita ſinus verſus anguli dati à dictis
<
lb
/>
arcubus comprehenſi ad differentiam inter ſinum verſum arcus dato angulo oppoſiti,
<
lb
/>
& </
s
>
<
s
xml:id
="
echoid-s16926
"
xml:space
="
preserve
">ſinum verſum differentiæ duorum arcuum datorum inæqualium: </
s
>
<
s
xml:id
="
echoid-s16927
"
xml:space
="
preserve
">ſi vellemus vti
<
lb
/>
hoc theoremate propoſ. </
s
>
<
s
xml:id
="
echoid-s16928
"
xml:space
="
preserve
">58. </
s
>
<
s
xml:id
="
echoid-s16929
"
xml:space
="
preserve
">moleſta redderetur multiplicatio in aurea regula, cum
<
lb
/>
ſinus verſus dati anguli multiplicandus eſſet per dictum rectangulum. </
s
>
<
s
xml:id
="
echoid-s16930
"
xml:space
="
preserve
">At in noſtra
<
lb
/>
praxi multo breuior fit muliiplicatio, vt patet, quamuis bis regulam auream adhi-
<
lb
/>
beamus.</
s
>
<
s
xml:id
="
echoid-s16931
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div1340
"
type
="
section
"
level
="
1
"
n
="
611
">
<
head
xml:id
="
echoid-head646
"
xml:space
="
preserve
">PROBL. 6. PROP. 65.</
head
>
<
p
>
<
s
xml:id
="
echoid-s16932
"
xml:space
="
preserve
">DATIS duobus angulis triáguli ſphærici </
s
>
</
p
>
</
div
>
</
text
>
</
echo
>