Valerio, Luca
,
De centro gravitatis solidorvm libri tres
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Figures
Thumbnails
Page concordance
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 240
241 - 270
271 - 283
>
Scan
Original
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
<
1 - 30
31 - 60
61 - 90
91 - 120
121 - 150
151 - 180
181 - 210
211 - 240
241 - 270
271 - 283
>
page
|<
<
of 283
>
>|
<
archimedes
>
<
text
>
<
body
>
<
chap
>
<
pb
xlink:href
="
043/01/059.jpg
"
pagenum
="
51
"/>
<
p
type
="
head
">
<
s
>
<
emph
type
="
italics
"/>
PROPOSITIO XXIV.
<
emph.end
type
="
italics
"/>
</
s
>
</
p
>
<
p
type
="
main
">
<
s
>Si duarum pyramidum triangul as baſes haben
<
lb
/>
tium æqualium, & ſimilium inter ſe, tria latera
<
lb
/>
tribus lateribus homologis fuerint in directum
<
lb
/>
conſtituta, in vertice communi erit vtriuſque ſi
<
lb
/>
mul centrum grauitatis. </
s
>
</
p
>
<
p
type
="
main
">
<
s
>Sint duæ pyramides ſimiles, & æquales, quarum ver
<
lb
/>
tex communis G, baſes autem triangula ABC, DEF.
<
lb
/>
</
s
>
<
s
>Et ſint latera homologa pyramidum in directum inter ſe
<
lb
/>
conſtituta: vt AG, GF: & BG, GD, & CG, GE.
<
lb
/>
</
s
>
<
s
>Dico compoſiti ex duabus pyramidibus ABCG, GDEF,
<
lb
/>
ita conſtitut is centrum gra
<
lb
/>
uitatis eſse in puncto G.
<
lb
/>
</
s
>
<
s
>Eſto enim H, centrum gra
<
lb
/>
uitatis pyramidis ABCG,
<
lb
/>
& ducta HGK, ponatur
<
lb
/>
G
<
emph
type
="
italics
"/>
K
<
emph.end
type
="
italics
"/>
, æqualis GH, & iun
<
lb
/>
gantur EK, KD, BH,
<
lb
/>
CH. </
s
>
<
s
>Quoniam igitur eſt
<
lb
/>
vt HG, ad GK, ita CG,
<
lb
/>
ad GE, & proportio eſt
<
lb
/>
æqualitatis: & angulus
<
lb
/>
HGC, æqualis angulo EG
<
lb
/>
<
emph
type
="
italics
"/>
K
<
emph.end
type
="
italics
"/>
, erit triangulum CGH,
<
lb
/>
<
figure
id
="
id.043.01.059.1.jpg
"
xlink:href
="
043/01/059/1.jpg
"
number
="
35
"/>
<
lb
/>
ſimile, & æquale triangulo EGK. </
s
>
<
s
>Similiter triangulum
<
lb
/>
BGH, trian gulo DGK; & triangulum BGC, triangu
<
lb
/>
lo DGE: quare & triangulum BCH, triangulo DEK.
<
lb
/>
pyramis igitur BCGH, ſimilis, & æqualis eſt pyramidi
<
lb
/>
EDGK. </
s
>
<
s
>Congruentibus igitur inter ſe duobus triangu</
s
>
</
p
>
</
chap
>
</
body
>
</
text
>
</
archimedes
>