Musschenbroek, Petrus van, Physicae experimentales, et geometricae de magnete, tuborum capillarium vitreorumque speculorum attractione, magnitudine terrae, cohaerentia corporum firmorum dissertationes: ut et ephemerides meteorologicae ultraiectinae

Page concordance

< >
Scan Original
601 584
602 585
603 586
604 587
605 588
606 589
607 590
608 591
609 592
610 593
611 594
612 595
613 596
614 597
615 598
616 599
617 600
618 601
619 602
620 603
621 604
622 605
623 606
624 607
625 608
626 609
627 610
628 611
629 612
630 613
< >
page |< < (598) of 795 > >|
    <echo version="1.0RC">
      <text xml:lang="la" type="free">
        <div xml:id="echoid-div554" type="section" level="1" n="554">
          <p style="it">
            <s xml:id="echoid-s14819" xml:space="preserve">
              <pb o="598" file="0614" n="615" rhead="INTRODUCTIO AD COHÆRENTIAM"/>
            baſi C B parieti infixum, ita ut axis A T ſit horizontalis, ſua gra-
              <lb/>
            vitate eſſe in omni ſectione æqualis Cohærentiæ.</s>
            <s xml:id="echoid-s14820" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s14821" xml:space="preserve">Propoſuit hoc Cl. </s>
            <s xml:id="echoid-s14822" xml:space="preserve">Leibnitſius in Actis Lipſ. </s>
            <s xml:id="echoid-s14823" xml:space="preserve">A°. </s>
            <s xml:id="echoid-s14824" xml:space="preserve">1684 inſtar ad-
              <lb/>
            ditamenti, quod abſque demonſtratione reliquit, quam hic adde-
              <lb/>
            mus: </s>
            <s xml:id="echoid-s14825" xml:space="preserve">Vocetur A T, a. </s>
            <s xml:id="echoid-s14826" xml:space="preserve">T B, r. </s>
            <s xml:id="echoid-s14827" xml:space="preserve">circumferentia circuli, cujus T B
              <lb/>
            eſt radius, ſit = c. </s>
            <s xml:id="echoid-s14828" xml:space="preserve">Erit ſoliditas corporis A C B = {1/10} a c r. </s>
            <s xml:id="echoid-s14829" xml:space="preserve">Cen-
              <lb/>
            trum vero gravitatis eſt in axe A T, diſſitum a puncto T = {1/6} a, un-
              <lb/>
            de momentum gravitatis in hoc corpore A C B eſt = {1/60} a a c r. </s>
            <s xml:id="echoid-s14830" xml:space="preserve">Co-
              <lb/>
            hærentia autem eſt ut Cubus baſeos C B = 8 r
              <emph style="super">3</emph>
            . </s>
            <s xml:id="echoid-s14831" xml:space="preserve">fiat ſectio in O, pla-
              <lb/>
            no F O E parallelo baſi C T B. </s>
            <s xml:id="echoid-s14832" xml:space="preserve">voceturque A O = d. </s>
            <s xml:id="echoid-s14833" xml:space="preserve">erit O E = {d d r/a a}.
              <lb/>
            </s>
            <s xml:id="echoid-s14834" xml:space="preserve">quia T B. </s>
            <s xml:id="echoid-s14835" xml:space="preserve">O E:</s>
            <s xml:id="echoid-s14836" xml:space="preserve">: peripheria circuli â B deſcripti, ad peripheriam ab E. </s>
            <s xml:id="echoid-s14837" xml:space="preserve">
              <lb/>
            erit hæc peripheria = {c d d/a a}. </s>
            <s xml:id="echoid-s14838" xml:space="preserve">quare ſoliditas corporis A F O E
              <lb/>
            = {c d
              <emph style="super">5</emph>
            r.</s>
            <s xml:id="echoid-s14839" xml:space="preserve">/10a
              <emph style="super">4</emph>
            } Centrum gravitatis in A F E diſtat ab O = {1/6} d. </s>
            <s xml:id="echoid-s14840" xml:space="preserve">adeoque
              <lb/>
            erit momentum hujus corporis ex gravitate = {c d
              <emph style="super">6</emph>
            r.</s>
            <s xml:id="echoid-s14841" xml:space="preserve">/60 a
              <emph style="super">4</emph>
            } Cohærentia
              <lb/>
            baſeos E O F eſt uti Cubus ex E F = {8d
              <emph style="super">6</emph>
            r
              <emph style="super">3</emph>
            .</s>
            <s xml:id="echoid-s14842" xml:space="preserve">/a
              <emph style="super">6</emph>
            } Si igitur momenta
              <lb/>
            gravitatis in corpore A C B & </s>
            <s xml:id="echoid-s14843" xml:space="preserve">A F E ſint ad Cohærentias ſuarum
              <lb/>
            baſium in eadem ratione, erunt quantitates proportionales, ordi-
              <lb/>
            nentur igitur in proportionem
              <lb/>
            {1/60} a a c r. </s>
            <s xml:id="echoid-s14844" xml:space="preserve">8r
              <emph style="super">3</emph>
            :</s>
            <s xml:id="echoid-s14845" xml:space="preserve">: {1 c d
              <emph style="super">6</emph>
            r/60 a
              <emph style="super">4</emph>
            }, {8d
              <emph style="super">6</emph>
            r
              <emph style="super">3</emph>
            .</s>
            <s xml:id="echoid-s14846" xml:space="preserve">/a
              <emph style="super">6</emph>
            }</s>
          </p>
          <p>
            <s xml:id="echoid-s14847" xml:space="preserve">Multiplicatis extremis mediisque terminis, habetur
              <lb/>
            {1/60} a a c r X {8 d
              <emph style="super">6</emph>
            r
              <emph style="super">3</emph>
            .</s>
            <s xml:id="echoid-s14848" xml:space="preserve">/a
              <emph style="super">6</emph>
            } & </s>
            <s xml:id="echoid-s14849" xml:space="preserve">{1 c d
              <emph style="super">6</emph>
            r/60 a
              <emph style="super">4</emph>
            } X 8 r
              <emph style="super">3</emph>
            .
              <lb/>
            </s>
            <s xml:id="echoid-s14850" xml:space="preserve">quæ quantitates ſunt inter ſe æquales, adeoque priores erant pro-
              <lb/>
            portionales, unde momenta cujuslibet ſectionis in hoc corpore
              <lb/>
            paraboliformi ſunt ſemper ad ſuas Cohærentias in eadem propor-
              <lb/>
            tione, hoc eſt, erit corpus grave ubivis æquabilis reſiſtentiæ. </s>
            <s xml:id="echoid-s14851" xml:space="preserve">
              <lb/>
            Q. </s>
            <s xml:id="echoid-s14852" xml:space="preserve">E. </s>
            <s xml:id="echoid-s14853" xml:space="preserve">D.</s>
            <s xml:id="echoid-s14854" xml:space="preserve"/>
          </p>
          <p>
            <s xml:id="echoid-s14855" xml:space="preserve">Corol. </s>
            <s xml:id="echoid-s14856" xml:space="preserve">Si corpus paraboliforme A B C ſecetur bifariam plano ho-
              <lb/>
            rizontali tranſeunte per axem A T, erit corpus A T B E A in qua-
              <lb/>
            libet Sectione O E æquabilis Cohærentiæ.</s>
            <s xml:id="echoid-s14857" xml:space="preserve"/>
          </p>
        </div>
      </text>
    </echo>