Cavalieri, Buonaventura
,
Geometria indivisibilibvs continvorvm : noua quadam ratione promota
Text
Text Image
Image
XML
Thumbnail overview
Document information
None
Concordance
Notes
Handwritten
Figures
Content
Thumbnails
List of thumbnails
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
41
(21)
42
(22)
43
(23)
44
(24)
45
(25)
46
(26)
47
(27)
48
(28)
49
(29)
50
(30)
<
1 - 10
11 - 20
21 - 30
31 - 40
41 - 50
51 - 60
61 - 70
71 - 80
81 - 90
91 - 100
101 - 110
111 - 120
121 - 130
131 - 140
141 - 150
151 - 160
161 - 170
171 - 180
181 - 190
191 - 200
201 - 210
211 - 220
221 - 230
231 - 240
241 - 250
251 - 260
261 - 270
271 - 280
281 - 290
291 - 300
301 - 310
311 - 320
321 - 330
331 - 340
341 - 350
351 - 360
361 - 370
371 - 380
381 - 390
391 - 400
401 - 410
411 - 420
421 - 430
431 - 440
441 - 450
451 - 460
461 - 470
471 - 480
481 - 490
491 - 500
501 - 510
511 - 520
521 - 530
531 - 540
541 - 550
551 - 560
561 - 569
>
page
|<
<
(43)
of 569
>
>|
<
echo
version
="
1.0RC
">
<
text
xml:lang
="
la
"
type
="
free
">
<
div
xml:id
="
echoid-div132
"
type
="
section
"
level
="
1
"
n
="
92
">
<
p
>
<
s
xml:id
="
echoid-s1137
"
xml:space
="
preserve
">
<
pb
o
="
43
"
file
="
0063
"
n
="
63
"
rhead
="
LIBERI.
"/>
E, ad, BD, ita, CA, ad, AB, ergo vt, CM, ad, MB, ita erit, C
<
lb
/>
A, ad, AB, diuidendo, CB, ad, BM, erit vt, CB, ad, BA, er-
<
lb
/>
go, MB, erit æqualis ipſi, BA, totum parti, quod eſt abiurdum,
<
lb
/>
non igitur, ED, producta tranſit ſupra, A, eodem modo oſtende-
<
lb
/>
mus non tranfire infra, A, ergo tranſibit per, A, ergo tria puncta,
<
lb
/>
A, D, E, erunt in recta linea, AE, quod erat oſtendendum.</
s
>
<
s
xml:id
="
echoid-s1138
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div134
"
type
="
section
"
level
="
1
"
n
="
93
">
<
head
xml:id
="
echoid-head104
"
xml:space
="
preserve
">THEOREMA XX. PROPOS. XXIII.</
head
>
<
p
>
<
s
xml:id
="
echoid-s1139
"
xml:space
="
preserve
">SI duarum quarumlibet ſimilium figurarum habeamus
<
lb
/>
homologas cum duabus quibuſdam regulis, habebi-
<
lb
/>
mus etiam homologas earundem cum duabus quibuſuis a-
<
lb
/>
lijs, cum prædictis angulos æquales ad eandem partem fa-
<
lb
/>
cientibus.</
s
>
<
s
xml:id
="
echoid-s1140
"
xml:space
="
preserve
"/>
</
p
>
<
p
>
<
s
xml:id
="
echoid-s1141
"
xml:space
="
preserve
">Patet hęc propoſitio, nam quæcunq; </
s
>
<
s
xml:id
="
echoid-s1142
"
xml:space
="
preserve
">figuræ planę ſimiles, ſi ſint
<
lb
/>
æquales, & </
s
>
<
s
xml:id
="
echoid-s1143
"
xml:space
="
preserve
">ſimiliter poſitæ, poſſunt eſſe cuiuſdam cylindrici oppo-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0063-01
"
xlink:href
="
note-0063-01a
"
xml:space
="
preserve
">14. Huius.</
note
>
ſitæ baſes, ſi ſint inæquales, oppoſitæ bales fruſti conici, in his au-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0063-02
"
xlink:href
="
note-0063-02a
"
xml:space
="
preserve
">22. Huius</
note
>
tem contingit, ſi habeamus homologas cum duabus quibuſdam re-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0063-03
"
xlink:href
="
note-0063-03a
"
xml:space
="
preserve
">Corol. 9.
<
lb
/>
& 11. hus
<
lb
/>
ius.</
note
>
gulis, nos eaſdem habere cum alijs duabus quibuſcumque cum præ-
<
lb
/>
dictis angulos æquales ad eandem partem conſtituentibus, ergo hoc
<
lb
/>
in quibuſcumque planis ſimilibus figuris verificatur, quod eſt pro-
<
lb
/>
poſitum.</
s
>
<
s
xml:id
="
echoid-s1144
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div136
"
type
="
section
"
level
="
1
"
n
="
94
">
<
head
xml:id
="
echoid-head105
"
xml:space
="
preserve
">COROLLARIVM.</
head
>
<
p
style
="
it
">
<
s
xml:id
="
echoid-s1145
"
xml:space
="
preserve
">_E_T quia incidentes ad homologarum ſimilium figurarum regulas an-
<
lb
/>
<
note
position
="
right
"
xlink:label
="
note-0063-04
"
xlink:href
="
note-0063-04a
"
xml:space
="
preserve
">_B. Def. 10._</
note
>
gulos ad eandem partem efficiunt æquales, ideò & </
s
>
<
s
xml:id
="
echoid-s1146
"
xml:space
="
preserve
">ipſæ incidentes
<
lb
/>
erunt homologarum earundem ſimilium figurarum regulæ, & </
s
>
<
s
xml:id
="
echoid-s1147
"
xml:space
="
preserve
">vice verſa
<
lb
/>
in quibuſdam regulis homologarum poterunt ſumi earum incidentes.</
s
>
<
s
xml:id
="
echoid-s1148
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
<
div
xml:id
="
echoid-div138
"
type
="
section
"
level
="
1
"
n
="
95
">
<
head
xml:id
="
echoid-head106
"
xml:space
="
preserve
">THEOREMA XXI. PROPOS. XXIV.</
head
>
<
p
>
<
s
xml:id
="
echoid-s1149
"
xml:space
="
preserve
">SI in duarum ſimilium figurarum oppoſitas tangentes, quę
<
lb
/>
earundem homologarum ſint regulæ, incidant duæ re-
<
lb
/>
ctæ lineæ ad eundem angulum ex eadem parte eaſdem ſe-
<
lb
/>
cantes, ductis verò quibuſdam duabus, prædictis tangenti-
<
lb
/>
bus parallelis, in dictis figuris, quæ ſecantes diuidant ſimi-
<
lb
/>
liter ad eandem partem, vel aſſumptis ipſis oppoſitis tangen-
<
lb
/>
tibus, reperiamus harum portiones inter incidentes, & </
s
>
<
s
xml:id
="
echoid-s1150
"
xml:space
="
preserve
"/>
</
p
>
</
div
>
</
text
>
</
echo
>