Alvarus, Thomas, Liber de triplici motu, 1509

Page concordance

< >
Scan Original
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
< >
page |< < of 290 > >|
64 merus ſenarius aequirit binarium et numerꝰ qui­
narius in eodem tempore etiam binariuꝫ: dico / 
eque velociter intenduntur ſed non eque ꝓportio-
nabiliter ſed ſi numerus ternarius acquirat vni-
tatem et numerus ſenarius acquirat in eodem tē-
pore dualitatem: dico /  tunc eque proportionabi­
liter acquirunt et non eque velociter.
quoniam tã­
ternarius numerus quam ſenarius ꝓportionem
ſexquitertiaꝫ acquirit / vt facile eſt intueri.
Hec dif­
finitio eſt.
His ſuppoſitis p̄miſſis ſit prima con­
cluſio.
Si aliqua potentia creſcit reſpectu reſiſtē-
tie non variate: tantam proportioneꝫ acquirit ſu­
pra ſe quantam ſupra ſuam reſiſtentiam et eocon­
tra:
Probatur hec concluſio auxiliante ſeptima
concluſione octaui capitis precedentis partis.
Nam potentia ſe habet vt quantitas maior et re-
ſiſtentia vt minor ſi actiuitas ꝓdeat.
Secunda concluſio Si aliqua vir-
tus decreſcat reſpectu reſiſtentie non variate.
tan­
tam proportionem deperdit reſpectu ſue reſiſten­
tie quantam reſpectu ſui ipſius.
vt capta potentia
vt .4. et reſiſtentia vt .2. ſi potentia / vt quatuor effi­
ciatur in ſexquitertio minor perdendo vnitatem
ſiue proportionem ſexquitertiam: eandem ꝓpor-
tionem ſexquitertiam perdit reſpectu ſue reſiſten­
tie vt duo.
Probatur hec concluſio ex ſeptima cõ­
cluſione i capitis preallegata eo modo quo
prior.
Tertia concluſio Si aliqua reſiſtē-
tia creſcat vel decreſcat reſpectu potentie non va­
riate: tantam proportionem acquiret vel deper-
det reſpectu ſui ipſius quantam acquiret vel deꝑ-
det reſpectu talis potentie.
Hoc eſt: tantam acqui­
rit vel deperdit talis potentia reſpectu eiuſdeꝫ re­
ſiſtentie.
Patet hec concluſio ex octaua concluſio­
ne octaui capitis p̄allegati et ſuo prīo correlario
Quarta concluſio Si potētia creſ-
cat vel decreſcat reſpectu potentie non variate: tã­
tam proportionem acquirit vel deperdit reſpectu
ſue reſiſtentie qnantam acquirit vel deperdit reſ­
pectu ſui ipſius.
Probatur hec concluſio ex primo
correlario ſeptime concluſionis capitis prealle-
gati / et facile ex prima et ſecunda huius deducitur
Quinta concluſio. Si aliqua potē-
tia eque velociter creſcit vĺ decreſcit reſpectu dua­
rum reſiſtentiarum ſiue equalium ſiue inequaliuꝫ
eque velociter cum vtra illarum intendet vel re­
mittet motum ſuum
Probatur hec concluſio / quo­
niam illa potentia equalem ꝓportionem acquirit
vel deperdit reſpectu vtriuſ reſiſtentie / vt patet
ex prima concluſione huius / et ſecunda parte ſepti­
me concluſionis octaui capitis preallegati et ſuo
ſecundo correlario / igitur equalem velocitatē ac-
quirit vel deperdit reſpectu vtriuſ reſiſtentie.
Patet conſequentia ex tertia ſuppoſitione.
Sexta concluſio Si aliqua reſiſtē-
tia creſcat vel decreſcat reſpectu duarum poten-
tiarum ſiue equalium ſiue inequaliū non variata­
rum: vtra potentia eque velociter cum illa reſi-
ſtentia intendet vel remittet motum ſuum.
Pro-
batur hec concluſio / quoniam reſpectu vtriuſ po­
tentie equalem ꝓportionem acquirit vel deperdit /
vt patet ex ſecundo correlario octaue concluſiõis
octaui capitis preallegati: igitur vtra potentia
equalem velocitatem acquirit vel deperdit.

Septima concluſio Si due potētie
inequales eque velociter creſcant vel decreſcãt reſ­
pectu eiuſdem reſiſtentie non variate: potentia mi­
nor velocius intendet vel remittet motū ſuū
Pro­
batur hec concluſio / quoniam ſemper potentia mi­
nor per equale crementum vel decrementū additū
ſibi vel deperditum et maiori: maiorem ꝓportio-
nem acquiret vel deperdet quam maior.
vt ptꝫ ex
quinta ſuppoſitiõe huius capitis: igitur talis po­
tentia velocius intendet vel remittet motum ſuuꝫ
Conſequentia patet ex prima ſuppoſitione. Ab
equalibus enim ꝓportionibus acquiſitis ſiue de-
perditis inequales velocitates acquiruntur ſiue
deperduntur / et per idem ſequitur /  ad acquiſitio­
nem vel deperditionem maioris maior velocitas
acquiritur vel deperditur
Octaua concluſio Si due reſiſtētie
inequales eque velociter creſcant vel decreſcãt reſ­
pectu eiuſdem potentie non variate: illa potentia
velocius intendet vel remittet motum ſuum cū mi­
nori reſiſtentia quam cum maiori.
Probatur hec
concluſio / quoniam ſemper minor reſiſtentia ma-
iorem proportionem acquirit vel deperdit ꝑ equa­
lem deperditionē vel additionē ipſi et maiori / igi­
tur potentia cum ea velocius intendet vel remittet
motū ſuum.
Patet conſequentia auxilio duarum
primarum ſuppoſitionum.
Nona concluſio Si due potentie in-
equales eque velociter creſcant vel decreſcant reſ­
pectu duarum reſiſtentiarum ſiue equalium ſiue ī­
equalium: potentia minor ſemper velocius inten­
det vel remittet motum ſuum ſiue agat cum reſiſtē­
tia maiore ſiue minore.
Patet hec concluſio ex ſe-
ptima huius.
Decima concluſio Si due reſiſten-
tie inequales creſcant vel decreſcant reſpectu dua­
rum potentiarum ſiue equalium ſiue inequalium:
potentia agens cum minore velocius intendet vel
remittet motum ſuum.
Hec patet ex octaua.
Undecima concluſio Si due potētie
equales vel inequales eque ꝓporrionabiliter creſ­
cant vel decreſcant reſpectu eiuſdem reſiſtentie nõ
variate: tales potentie eque velociter intendēt vel
remittēt motus ſuos.
Patet hec concluſio ex ſexta
ſuppoſitione / que diffinit iſtum terminum eque ꝓ­
portionabiliter auxilio prime ſuppoſitionis.
Duodecima concluſio Si due reſi-
ſtentie equales ſiue inequales eque ꝓportionabi-
liter creſcant vel decreſcant reſpectu eiuſdem po-
tentie non variate.
talis potentia cum vtra illa­
rum reſiſtentiarum eque velociter intendet vel re-
mittet motum ſuum.
Hec cum precedente eandem
ſortitur demonſtrationem.
Tridecima concluſio Si due poten-
tie inequales eque ꝓportionabiliter creſcant vel
decreſcant reſpectu duarum reſiſtentiaruꝫ ſiue eq̄­
lium ſiue inequalium non variatarum: ipſe eque­
velociter intendent vel remittent motus ſuos.
Pa­
tet hec concluſio ex prima ſuppoſitione auxiliãte
vltima diffiniente eque velociter et eque propor-
tionabiliter.
Quartadecima concluſio Si due re­
ſiſtentie inequales creſcant vel decreſcant eque ꝓ­
portionabiliter reſpectu duarum potentiarum ſi­
ue equalium ſiue inqualium: tales potentie eque

Text layer

  • Dictionary

Text normalization

  • Original

Search


  • Exact
  • All forms
  • Fulltext index
  • Morphological index