Benedetti, Giovanni Battista de, Io. Baptistae Benedicti ... Diversarvm specvlationvm mathematicarum, et physicarum liber : quarum seriem sequens pagina indicabit ; [annotated and critiqued by Guidobaldo Del Monte]

Page concordance

< >
Scan Original
60 48
61 49
62 50
63 51
64 52
65 53
66 54
67 55
68 56
69 57
70 58
71 59
72 60
73 61
74 62
75 63
76 64
77 65
78 66
79 67
80 70
81 71
82 70
83 71
84 72
85 73
86 74
87 75
88 76
89 77
< >
page |< < (53) of 445 > >|
    <echo version="1.0">
      <text type="book" xml:lang="la">
        <div xml:id="echoid-div7" type="body" level="1" n="1">
          <div xml:id="echoid-div7" type="chapter" level="2" n="1">
            <div xml:id="echoid-div157" type="math:theorem" level="3" n="80">
              <p>
                <s xml:id="echoid-s703" xml:space="preserve">
                  <pb o="53" rhead="THEOREM. ARITH." n="65" file="0065" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/pageimg/0065"/>
                proportione diuidentium, quamuis ex aduerſo.</s>
              </p>
              <p>
                <s xml:id="echoid-s704" xml:space="preserve">Cuius ratio ex .15. ſexti aut .20. ſeptimi dependet. </s>
                <s xml:id="echoid-s705" xml:space="preserve">prout in ſubſcripto ordine fa-
                  <lb/>
                cillimè deprehendi poteſt.</s>
              </p>
            </div>
            <div xml:id="echoid-div159" type="math:theorem" level="3" n="81">
              <head xml:id="echoid-head98" xml:space="preserve">THEOREMA
                <num value="81">LXXXI</num>
              .</head>
              <p>
                <s xml:id="echoid-s706" xml:space="preserve">CVR quantitate in tres continuas partes proportionales ſecta, & per ſingulas
                  <lb/>
                ipſarum diuiſa, ſumma trium prouenientium quadrato medij prouenientis
                  <lb/>
                æqualis eſt.</s>
              </p>
              <p>
                <s xml:id="echoid-s707" xml:space="preserve">Exempli gratia, proponitur .14. diuidendus in tres continuas partes proportio-
                  <lb/>
                nales, nempe .8. 4. 2.
                  <reg norm="ipſeque" type="simple">ipſeq́;</reg>
                numerus .14. per ſingulas diuiditur, ex quo tria proue-
                  <lb/>
                nientia oriuntur, nempe ex prima parte .8.
                  <reg norm="proueniens" type="context">proueniẽs</reg>
                erit .1. cum tribus quartis par
                  <lb/>
                tibus ex ſecunda .4. datur proueniens .3. cum dimidio vnius, & ex tertia .2. proue-
                  <lb/>
                nient .7. integri, qui in ſummam collecti dant .12. integros & vnam quartam par-
                  <lb/>
                tem tantumdem, videlicet quantum quadratum prouenientis medij, nempe .3.
                  <lb/>
                cum dimidio.</s>
              </p>
              <p>
                <s xml:id="echoid-s708" xml:space="preserve">Cuius ſpeculationis gratia, totalis numerus ſignificetur linea
                  <var>.n.c.</var>
                qui in tres par-
                  <lb/>
                tes diuidatur
                  <var>.n.a</var>
                :
                  <var>a.e.</var>
                et
                  <var>.e.c.</var>
                quæ ſint continuæ proportionales, quarum ſingulis,
                  <lb/>
                numerum
                  <var>.n.c.</var>
                diuiſum eſſe cogitemus, proueniens autem ex diuiſione
                  <var>.n.c.</var>
                per
                  <var>.n.
                    <lb/>
                  a.</var>
                ſit
                  <var>.i.d.</var>
                quod verò prouenit ex diuiſione
                  <var>.n.c.</var>
                per
                  <var>.a.e.</var>
                ſit
                  <var>.d.u.</var>
                proueniens quoque ex
                  <lb/>
                diuiſione
                  <var>.n.c.</var>
                per
                  <var>.e.c.</var>
                ſit
                  <var>.u.o.</var>
                quorum ſumma ſit
                  <var>.i.o.</var>
                quæ aſſeritur eſſe numeri æqua-
                  <lb/>
                lis numero quadrati
                  <var>.d.u</var>
                . </s>
                <s xml:id="echoid-s709" xml:space="preserve">Quod hac ratione probabo, producatur linea
                  <var>.i.o.</var>
                donec
                  <var>.
                    <lb/>
                  o.p.</var>
                æqualis ſit
                  <var>.o.u.</var>
                  <reg norm="erigaturque" type="simple">erigaturq́;</reg>
                  <var>.o.m.</var>
                æqualis
                  <var>.d.i.</var>
                perpendiculariter
                  <var>.o.p.</var>
                in puncto
                  <var>.o.</var>
                  <lb/>
                quæ producatur donec
                  <var>.o.q.</var>
                vnitati ſit æqualis,
                  <reg norm="terminenturque" type="simple">terminenturq́;</reg>
                duo rectangula
                  <var>.m.p.</var>
                  <lb/>
                et
                  <var>.q.i.</var>
                ex quo habebimus rectangulum, aut productum
                  <var>.m.p.</var>
                æquale quadrato
                  <var>.d.u.</var>
                  <lb/>
                ex .16 ſexti aut .20. ſeptimi, quandoquidem tria prouenientia
                  <var>.o.u</var>
                :
                  <var>u.d.</var>
                et
                  <var>.d.i.</var>
                ex
                  <lb/>
                pręcedenti theoremate ſunt inter ſe continua proportionalia, proportionalitate qua
                  <lb/>
                partes
                  <var>.n.c</var>
                . </s>
                <s xml:id="echoid-s710" xml:space="preserve">Iam verò ſi probauero
                  <var>.q.i.</var>
                productum, producto
                  <var>.m.p.</var>
                æquale eſſe, pro-
                  <lb/>
                poſitum quoque probatum erit. </s>
                <s xml:id="echoid-s711" xml:space="preserve">Numerus enim producti
                  <var>.q.i.</var>
                æqualis eſt numero.
                  <lb/>
                </s>
                <s xml:id="echoid-s712" xml:space="preserve">ſummæ
                  <var>.i.o</var>
                . </s>
                <s xml:id="echoid-s713" xml:space="preserve">Habemus autem ex definitione diuiſionis ita ſe habere
                  <var>.n.c.</var>
                ad
                  <var>.i.d.</var>
                ſicut
                  <var>.
                    <lb/>
                  n.a.</var>
                ad
                  <var>.o.q</var>
                . </s>
                <s xml:id="echoid-s714" xml:space="preserve">Itaque permutando ſic ſe habebit
                  <var>.n.c.</var>
                ad
                  <var>.n.a.</var>
                ſicut
                  <var>.d.i.</var>
                hoc eſt
                  <var>.m.o.</var>
                ad
                  <var>.
                    <lb/>
                  o.q.</var>
                ſed ſicut ſe habet
                  <var>.n.c.</var>
                ad
                  <var>.n.a.</var>
                ita pariter ſe habet
                  <var>.i.o.</var>
                ad
                  <var>.o.u.</var>
                hoc eſt ad
                  <var>.o.p</var>
                . </s>
                <s xml:id="echoid-s715" xml:space="preserve">Ita-
                  <lb/>
                que
                  <var>.i.o.</var>
                ad
                  <var>.o.p.</var>
                ſic ſe habebit ſicut
                  <var>.m.o.</var>
                ad
                  <var>.o.q.</var>
                ex quo ex .15. ſexti aut .20. ſeptimi
                  <var>.
                    <lb/>
                  q.i.</var>
                æqualis erit
                  <var>.m.p.</var>
                & conſequenter quadrato
                  <var>.d.u</var>
                . </s>
                <s xml:id="echoid-s716" xml:space="preserve">Vt autem lector minori labo-
                  <lb/>
                re cognoſcere queat
                  <var>.i.o.</var>
                ad
                  <var>.o.u.</var>
                ſic ſe habere, vt
                  <var>.n.c.</var>
                ad
                  <var>.n.a.</var>
                ſciendum eſt quòd, ſic
                  <lb/>
                ſe habet
                  <var>.i.d.</var>
                ad
                  <var>.d.u.</var>
                ut
                  <var>.c.e.</var>
                ad
                  <var>.e.a.</var>
                ex quo componendo ſic ſe habebit
                  <var>.i.u.</var>
                ad
                  <var>.d.u.</var>
                ſi-
                  <lb/>
                cut
                  <var>.c.a.</var>
                ad
                  <var>.a.e.</var>
                & permutando ita
                  <var>.i.u.</var>
                  <lb/>
                  <figure xlink:label="fig-0065-01" xlink:href="fig-0065-01a" number="90">
                    <image file="0065-01" xlink:href="http://echo.mpiwg-berlin.mpg.de/zogilib?fn=/permanent/library/163127KK/figures/0065-01"/>
                  </figure>
                ad
                  <var>.c.a.</var>
                vt
                  <var>.d.u.</var>
                ad
                  <var>.e.a.</var>
                ſed cum ex
                  <reg norm="præ- cedenti" type="context">præ-
                    <lb/>
                  cedẽti</reg>
                theoremate ſic ſe habeat
                  <var>.d.u.</var>
                  <lb/>
                ad
                  <var>.u.o.</var>
                ſicut
                  <var>.e.a.</var>
                ad
                  <var>.a.n.</var>
                permutando
                  <lb/>
                ſic ſe habebit
                  <var>.d.u.</var>
                ad
                  <var>.a.e.</var>
                ſicut
                  <var>.u.o.</var>
                ad
                  <lb/>
                  <var>a.n.</var>
                ex quo ex .11. quinti ſic ſe habe-
                  <lb/>
                bit
                  <var>.i.u.</var>
                ad
                  <var>.c.a.</var>
                prout
                  <var>.o.u.</var>
                ad
                  <var>.a.n.</var>
                per-
                  <lb/>
                mutandoq́ue
                  <var>.i.u.</var>
                ad
                  <var>.u.o.</var>
                vt
                  <var>.c.a.</var>
                ad
                  <var>.a.n.</var>
                & componendo, ita
                  <var>.i.o.</var>
                ad
                  <var>.u.o.</var>
                ſicut
                  <var>.c.n.</var>
                  <lb/>
                ad
                  <var>.a.n</var>
                .</s>
              </p>
            </div>
          </div>
        </div>
      </text>
    </echo>